Please note, these are the actual video-recorded proceedings from the live CME event and may include the use of trade names and other raw, unedited content. Immunotherapy and Multiplex Genomic Evaluation in Triple Negative Breast Cancer

Disclosures

Advisory Committee and Consulting Agreements	Amgen Inc, AstraZeneca Pharmaceuticals LP, Celgene Corporation, Eisai Inc, Genentech BioOncology, Lilly, Merck, Novartis, Pfizer Inc, Roche Laboratories Inc, Sanofi Genzyme, Takeda Oncology
Contracted Research	Merck

Case presentation: Dr Ma

69-year-old woman

 2015: Metastatic TNBC (ER was 2%) → AC x 1 (toxicity)

- Positive for AR; started BRE203 trial with orteronel 300 mg BID x 5 months
 → PD → capecitabine
- 2017: Androgen deprivation trial, PD on first restaging scan → nab paclitaxel → PD → eribulin
- FoundationOne testing showed mutations in HER2, DNMT3A, p53, ZNF, SF3B1

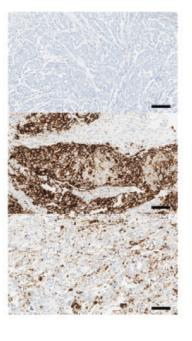
Case presentation: Dr Agrawal

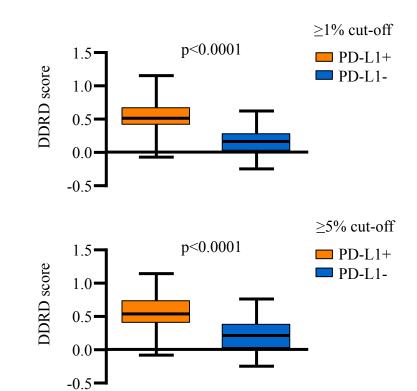
- 36-year-old woman with clinical Stage II ER/PR-negative, HER2-negative BC
 - Neoadjuvant therapy: Weekly paclitaxel/carboplatin followed by dose-dense AC + pegfilgrastim
 - Complete clinical response
- Lumpectomy, with bilateral nipple-sparing mastectomy
 - Residual disease, with 10/13 nodes involved
- Underwent radiation therapy
- Discussion of adjuvant capecitabine

Case presentation: Dr Hart

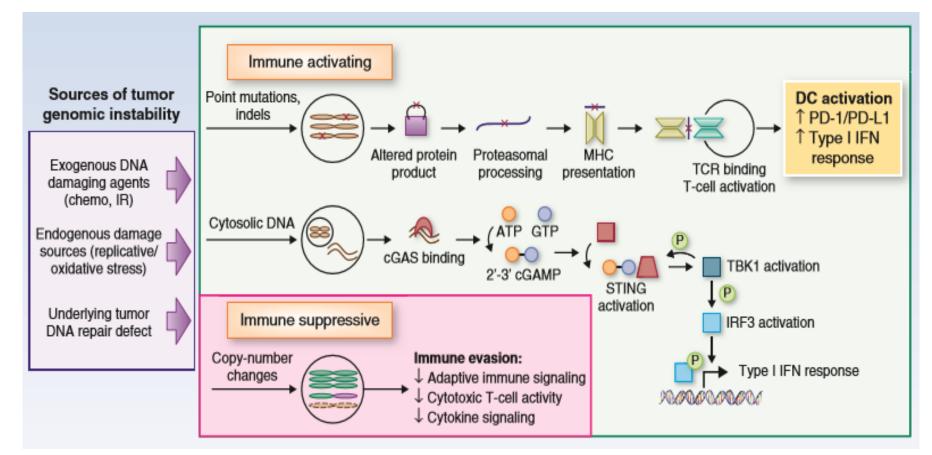
51-year-old woman

- Metastatic TNBC with liver involvement
- 2016: Nab paclitaxel ± atezolizumab trial (unblinded: Received nab paclitaxel alone) x 4 months → PD → AC x 4 then palliative MRM
- 2017: Eribulin for 6 months → CR maintained off therapy; patient feels well except mild neuropathy

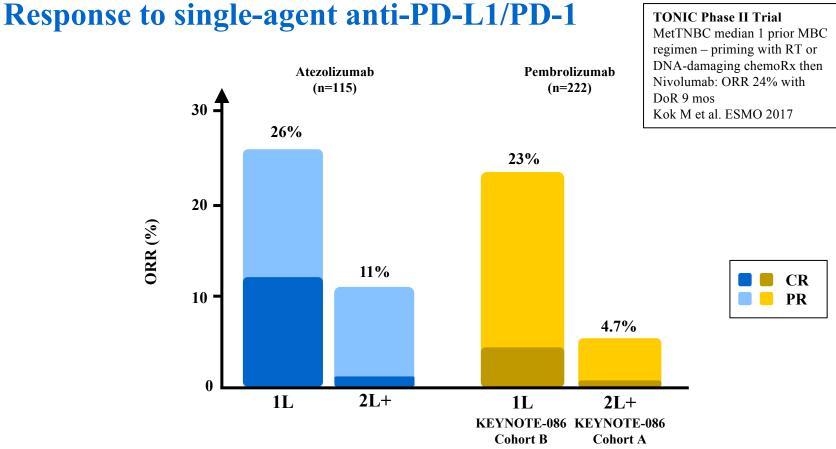



Expression of PD-L1 is associated with tumours deficient in DNA damage response

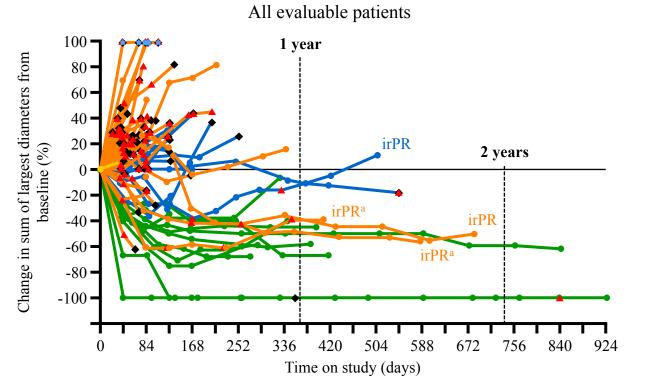
DDRD-negative

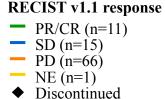

DDRD-positive tumour (CD8+ and CD4+ lymphocytes by IHC)

DDRD-positive immune (CD8+ and CD4+ lymphocytes by IHC)



The Enlarging Intersection of DNA Repair Deficiency and Immunotherapy


Mouw KW, et al. Cancer Discovery, 2017



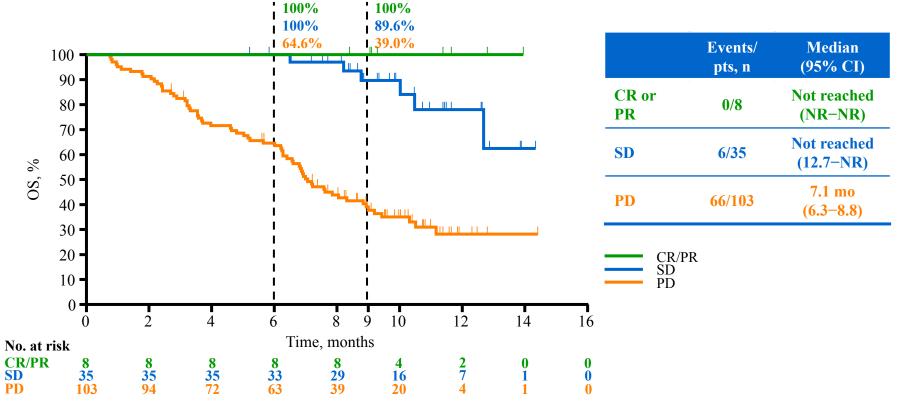
1L, first line; 2L, second line; CR, complete response; ORR, objective response rate; PD-1, programmed death -1; PD-L1, programmed death-ligand 1; PR, partial response

Schmid, et al. AACR 2017; Adams, et al ASCO 2017

Durable responses with anti-PD-L1 mAb atezolizumab

- New lesion
- ★ >100%

Phase Ia atezolizumab in mTNBC. aRe-treatment period not plotted.

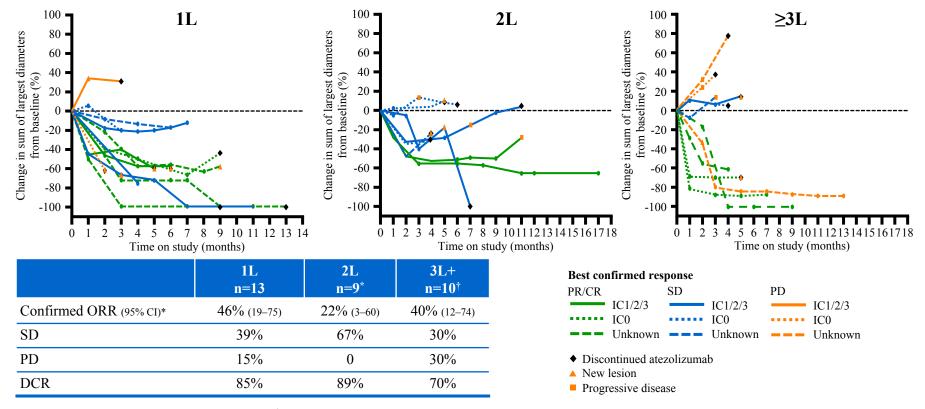

CR, complete response; irPR, PR per irRC; irRC, immune-related response criteria; NE, not evaluable;

ORR, objective response rate; PR, partial response; PD, progressive disease; PD-L1, programmed death-ligand 1;

SD, stable disease

Schmid, et al. AACR 2017

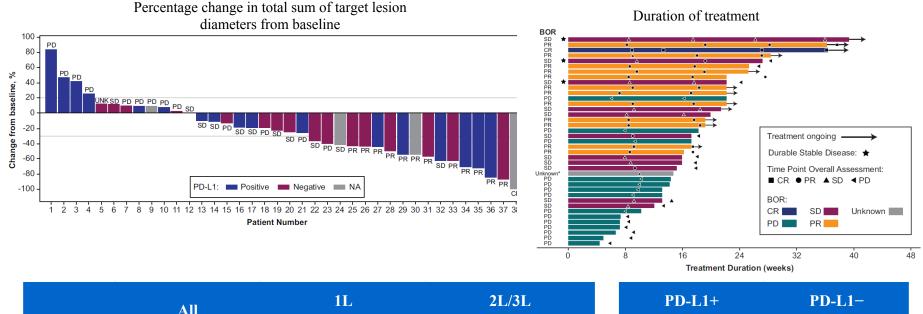
OS by best response to anti-PD-1 pembrolizumab in 2L+ metTNBC


2L+ pembrolizumab

CR, complete response; NR, not reportable; OS, overall survival; PR, partial response; PD, progressive disease;

PD-1, programmed death-1; SD, stable disease

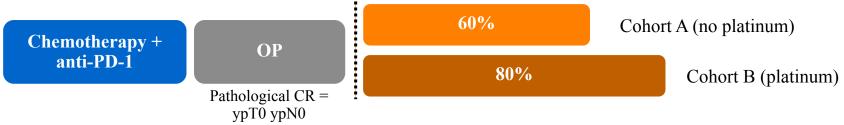
Adams, et al ASCO 2017


Nab-paclitaxel + anti-PD-L1 (atezolizumab)

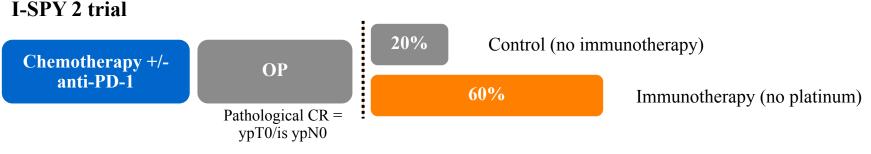
*Investigator-assessed confirmed response rate. [†]One tissue missing/unevaluable.1L, first line; 2L, second line; 3L, third line; CI, confidence interval; CR, complete response; DCR, disease control rate; IC, tumour-infiltrating immune cell; ORR, objective response rate; PD-L1, programmed death-ligand 1; PR, partial response; PD, progressive disease; SD, stable disease

Adams, et al. ASCO 2016

Eribulin + anti-PD-1 (pembrolizumab)


	All	(n=17)	(n=18)	(n=17)	(n=18)
ORR	34.4%	41.2%	27.3%	29.4%	33.3%
CBR	40.6%	47.1%	36.4%	35.8%	44.4%

1L, first line; 2L/3L, second/third line; BOR, best overall response; CBR, clinical benefit rate; CR, complete response; IC, tumour-infiltrating immune cell; ORR, objective response rate; PD-1, programmed death-1; PD-L1, programmed death-ligand 1; PR, partial response; PD, progressive disease; SD, stable disease


Tolaney, et al. SABCS 2016

Neoadjuvant chemotherapy + anti-PD-L1/anti-PD-1

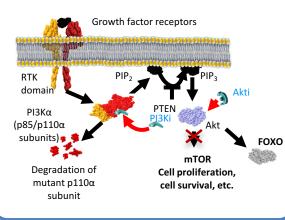
KEYNOTE-173 phase 1/2 trial

Paclitaxel Q1W x12 ± carboplatin Q1W x12 + pembrolizumab Q3W x4 → AC Q3W x4 + pembrolizumab Q3W x4

Paclitaxel Q1W x12 + pembrolizumab Q3W x4 \rightarrow AC Q3W x4

AC, doxorubicin + cyclophosphamide; CR, complete response; PD-1, programmed death-1; PD-L1, programmed deathligand 1; Q1W, every week; Q3W, every 3 weeks; ypT0/Tis ypN0, no invasive residual in breast or nodes - noninvasive breast residuals allowed; ypT0 ypN0, no invasive or noninvasive residual in breast or nodes

Schmid, et al. ASCO 2017; Nanda, et al. ASCO 2017


Multiplex Genomic Evaluation in TNBC: Evolving Clinical Utility

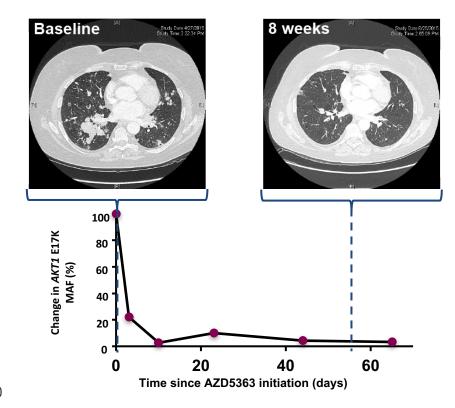
Targeting the PI3K pathway through AKT

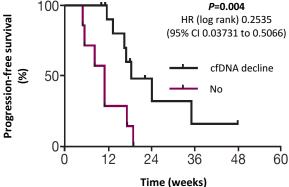
PI3Ki, e.g. alpelisib, taselisib

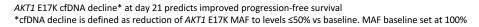
- Targets the ATP-binding pocket in the p110α subunit of PI3K⁴
- Uniquely induces degradation of the mutant p110α subunit⁵
- Maintains PI3K pathway suppression

PI3K/Akt pathway activation frequently occurs in TNBC^{1–3}

Akti, e.g. AZD5363, ipatasertib

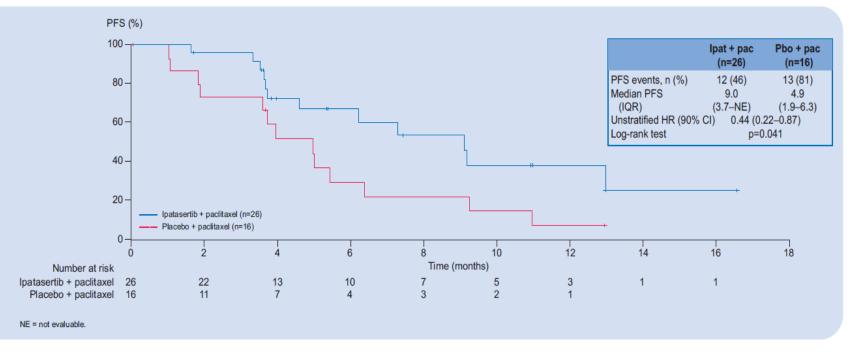

- Selectively binds all three isoforms of Akt⁶
- Inhibits signalling via mTOR and promotes FOXOdependent apoptosis⁷
- Blocks the pathway even when activated downstream of PI3K

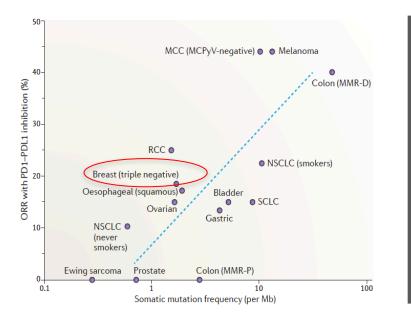

Inhibition by either mechanism prevents downstream events, including tumour cell proliferation, and sensitises cells to apoptosis


Koboldt DC, et al. Nature 2012; 2. Miller TW, et al. Breast Cancer Res 2011; 3. Cossu-Rocca P, et al. PLOS One 2015;
 Biooncology. https://www.biooncology.com/pipeline-molecules/taselisib.html; 5. Freidman LS, et al. SABCS 2016;
 Nitulescu GM, et al. Int J Oncol. 2016; 7. Lin J, et al. Clin Cancer Res 2013.

AKT1 E17K in plasma tumor ctDNA predicts response to AZD5363

- AKT mutation detectable in 21/23 patients at baseline by ddPCR and MSK-IMPACT
- Transient AKT1 ctDNA decline observed in 20/21 (95%) patients, but persistent (≥21 days) decline^{*} correlated with PFS and RECIST response





Paclitaxel +/- Ipatasertib: AKT Inhibitor for PI3K altered MetTNBC

PI3K/AKT/PTEN Abn by NGS

Dent R et al. ASCO. 2017.

Tumor Type	No. of Tumors	Patients with a Response	Range of Response Duration
		no. (%)	mo
Colorectal cancer	90	32 (36)	1.6+ to 22.7+
Endometrial cancer	14	5 (36)	4.2+ to 17.3+
Biliary cancer	11	3 (27)	11.6+ to 19.6+
Gastric or gastroesophageal junction	9	5 (56)	5.8+ to 22.1+
Pancreatic cancer	6	5 (83)	2.6+ to 9.2+
Small-intestine cancer	8	3 (38)	1.9+ to 9.1+
Breast cancer	2	2 (100)	7.6 to 15.9
Prostate cancer	2	1 (50)	9.8+
Other cancers	7	3 (43)	7.5+ to 18.2+

Microsatellite Instability and Breast Cancer

Uncommon but Actionable

Lemery S, et al. New Engl J Med 2017