Updates on treatment advances in small cell lung cancer, mesothelioma, thymoma and thymic carcinoma

Giuseppe Giaccone, MD, PhD
Associate Director for Clinical Research
Lombardi Comprehensive Cancer Center
Professor of Medical Oncology and Pharmacology
Georgetown University
Director of Clinical Research
MedStar Health Cancer Network’s Washington Region
Washington, DC
2 cases
SCLC and MESOTHELIOMA

G. Giaccone, MD PhD
Professor of Medical Oncology and Pharmacology
Associate Director for Clinical Research
Lombardi Comprehensive Cancer Center
Georgetown University

Ft. Lauderdale February 14, 2016
Small cell lung cancer

- 63 yo with 42 year history of smoking
- Hemoptysis and intense cough in July 2014
- Chest X-ray, pneumonia, antibiotics
- CT scan: large (7cm) primary tumor right hemithorax, mediastinal adenopathy, liver metastasis
- Biopsy of liver metastasis: small cell lung carcinoma
- Carboplatin-etoposide 6 cycles, with disappearance of thoracic disease (Aug-Dec 2014)
- 5/26/15 progression of liver metastasis
- Experimental treatment vs standard treatment
 - Experimental treatment with doxorubicin and ganetespib: good response, severe mucositis and diarrhea
 - Tumor shrinkage continues after 6 doxorubicin cycles and ganetespib alone
Small cell lung cancer

• 63 yo with 42 year history of smoking
• Hemoptysis and intense cough in July 2014
• Chest X-ray, pneumonia, antibiotics
• CT scan: large (7cm) primary tumor right hemithorax, mediastinal adenopathy, liver metastasis
• Biopsy of liver metastasis: small cell lung carcinoma
• Carboplatin-etoposide 6 cycles, with disappearance of thoracic disease (Aug-Dec 2014)
• 5/26/15 progression of liver metastasis
• Experimental treatment vs standard treatment
 • Experimental treatment with doxorubicin and ganetespib: good response, severe mucositis and diarrhea
 • Tumor shrinkage continues after 6 doxorubicin cycles and ganetespib alone
Multiple pleural lesions right hemithorax
Malignant pleural mesothelioma

• 76 yo Caucasian man
• Abnormal routine chest X-ray end of 2013
• CT scan Jan 2014 shows multiple pleural-based masses right hemithorax
• CT guided biopsy: epithelioid mesothelioma
• Treatment of “early stage” mesothelioma
• Carbo-pemetrexed x6 with minor response
 • Right VATS pleurectomy and decortication on 11/6/14: surgeon says that there was more tumor than expected based on the CT scan; likely non-radical resection; radiotherapy felt too extensive
• Jan 2015 progression
• April 2015 doxorubicin + ganetespib, stable disease after 6 cycles
• September 2015 progression, pembrolizumab
Minor response to “neoadjuvant chemotherapy”

Baseline

2 months
Malignant pleural mesothelioma

- 76 yo Caucasian man
- Abnormal routine chest X-ray end of 2013
- CT scan Jan 2014 shows multiple pleural based masses right hemithorax
- CT guided biopsy: epithelioid mesothelioma
- Treatment of “early stage” mesothelioma
- Carbo-pemetrexed x6 with minor response
- Right VATS pleurectomy and decortication on 11/6/14: surgeon says that there was more tumor than expected based on the CT scan; likely non-radical resection; radiotherapy felt too extensive
- Jan 2015 progression
- April 2015 doxorubicin + ganetespib, stable disease after 6 cycles
- September 2015 progression, pembrolizumab
Recurrent pleural mesothelioma: before and after 6 cycles of pembrolizumab
Updates on treatment advances in small cell lung cancer, mesothelioma, thymoma and thymic carcinoma

Giuseppe Giaccone, MD, PhD
Associate Director for Clinical Research
Lombardi Comprehensive Cancer Center
Professor of Medical Oncology and Pharmacology
Georgetown University
Director of Clinical Research
MedStar Health Cancer Network’s Washington Region
Washington, DC
Disclosures

<table>
<thead>
<tr>
<th>Advisory Committee</th>
<th>Celgene Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contracted Research</td>
<td>AstraZeneca Pharmaceuticals LP, Karyopharm Therapeutics</td>
</tr>
</tbody>
</table>
SMALL CELL LUNG CANCER
CheckMate 032 Study Design

SCLC (n = 128) with progressive disease after ≥1 prior line of therapy, including a platinum-based regimen in first line (unselected by PD-L1 expression)

Nivolumab 3 mg/kg IV Q2W (n = 40)

Nivolumab 1 mg/kg + Ipiplimumab 1 mg/kg IV Q3W for 4 cycles (n = 3)

Nivolumab 1 mg/kg + Ipiplimumab 3 mg/kg IV Q3W for 4 cycles (n = 47)

Nivolumab 3 mg/kg IV Q2W

Primary objective: ORR per RECIST v1.1
Secondary objective: safety
Exploratory objectives: PFS, OS, biomarker analysis

Database lock: February 16, 2015

*Data from this cohort will be presented at a later time.

Presented By Scott Antonia at 2015 ASCO Annual Meeting
KEYNOTE-028 (NCT02054806): Phase 1b Multicohort Study of Pembrolizumab for PD-L1+ Advanced Solid Tumors

Patients
- Small cell lung cancer
- Failure of or inability to receive standard therapy
- ECOG PS 0 or 1
- ≥1 measurable lesion
- PD-L1 positivity
- No autoimmune disease or interstitial lung disease

Pembrolizumab 10 mg/kg IV Q2W

Complete or partial response or stable disease
- Treat for 24 months or until progression or intolerable toxicity

Confirmed progressive disease or unacceptable toxicity
- Discontinue pembrolizumab

Response assessment: Every 8 weeks for the first 6 months; every 12 weeks thereafter

Primary end points: ORR per RECIST v1.1 and safety

Secondary end points: PFS, OS, duration of response

If clinically stable, patients are to remain on pembrolizumab until progressive disease is confirmed on a second scan performed 24 weeks later.

Presented By Patrick Ott at 2015 ASCO Annual Meeting
DLL3

- Notch pathway implicated in regulating neuroendocrine vs epithelial cell fate decision in developing lung
- Ligands DLL1 (delta-like), DLL4, JAG1 and JAG2 activate Notch receptor in trans
- DLL3 predominantly in Golgi and unable to activate Notch. It inhibits both trans- and cis-activation by interacting with Notch and DLL1
- High expression of DLL3 in SCLC and LC NEC; low expression in normal tissues
Activity of SC16LD6.5 on PDX of neuroendocrine carcinomas of the lung

Lu64 SCLC

Lu86 SCLC

Lu37 LCNEC

Rovalpituzumab tesirine (SC16LD6.5) – phase I in SCLC

- A DLL3 antibody-drug conjugate
- 0.05 – 0.8 mg/kg q3w or q6w
- 52 SCLC patients in second and third line
- Thrombocytopenia and capillary leak syndrome
- 44% of 16 DLL3 high expressors (H score ≥ 120) had PR
- 22% response rate in all patients (32) treated at MTD

Rudin CM et al. World Conference on Lung Cancer 2015
MESOTHELIOMA
Malignant Pleural Mesothelioma (MPM)
- Histologically proven
- PS = 0-2
- No cardiovascular comorbidity
- Chemonaïve

IFCT-GFPC-0701 trial: MAPS

IFCT-sponsored, open-label, multi-centre randomized phase II-III trial

A
Pemetrexed 500 mg/m² D1
Cisplatin 75mg/m² D1
6 cycles, Q21D

R 1:1

B
Pemetrexed 500 mg/m² D1
Cisplatin 75mg/m² D1
Bevacizumab 15 mg/kg D1
6 cycles, Q21D

Surveillance
No cross-over allowed

Maintenance Bevacizumab
15 mg/kg D1, Q21D until progression

CT-scan Q 3 cycles in both arms.
Response assessed with modified RECIST criteria for mesothelioma

Stratification: center, histology (epithelioid vs. sarcomatoid/mixed), PS (0-1 vs. 2), smoking status (ever smoker vs. never-smoker)

Presented By Gerard Zalcman at 2015 ASCO Annual Meeting
Focus on bevacizumab-related toxicities

<table>
<thead>
<tr>
<th>Condition</th>
<th>Arm A (n=224)</th>
<th>Arm B (n=222)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary Embolism & Venous Thrombosis</td>
<td>3 (1.3%)</td>
<td>12 (5.4%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Grade 2</td>
<td>0</td>
<td>3 (1.4%)</td>
<td>0.12</td>
</tr>
<tr>
<td>Grade 3</td>
<td>1 (0.4%)</td>
<td>3 (1.4%)</td>
<td>0.37</td>
</tr>
<tr>
<td>Grade 4</td>
<td>1 (0.4%)</td>
<td>6 (2.7%)</td>
<td>0.07</td>
</tr>
<tr>
<td>Arterial Thrombosis</td>
<td>0</td>
<td>5 (2.3%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Grade 3</td>
<td>0</td>
<td>3 (1.4%)</td>
<td>0.12</td>
</tr>
<tr>
<td>Grade 4</td>
<td>0</td>
<td>2 (0.9%)</td>
<td>0.25</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>14 (6.3%)</td>
<td>63 (37.4%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grade 1</td>
<td>14 (6.3%)</td>
<td>79 (35.6%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grade 2</td>
<td>0 (0.0%)</td>
<td>4 (1.8%)</td>
<td>0.06</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3 (1.3%)</td>
<td>125 (56.3%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grade 1</td>
<td>2 (0.9%)</td>
<td>21 (9.4%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grade 2</td>
<td>1 (0.4%)</td>
<td>53 (23.9%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grade 3</td>
<td>0</td>
<td>51 (23.0%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>1 (0.4%)</td>
<td>37 (16.7%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grade 1</td>
<td>0</td>
<td>11 (5.0%)</td>
<td>0.0007</td>
</tr>
<tr>
<td>Grade 2</td>
<td>1 (0.4%)</td>
<td>19 (8.6%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grade 3</td>
<td>0</td>
<td>7 (3.2%)</td>
<td>0.007</td>
</tr>
<tr>
<td>Gastrointestinal perforation</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hemorrhage (without epistaxis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1/2</td>
<td>2 (0.9%)</td>
<td>20 (9.9%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grade 3/4</td>
<td>0</td>
<td>2 (0.9%)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

*1 brain hemorrhage leading to death (grade 5), 10 days later.

Presented By Gerard Zalcman at 2015 ASCO Annual Meeting
Efficacy: ITT Progression-free Survival (PFS)

median follow-up = 39.4 mo [11.0-83.0]

- Median PFS: 7.48 mo, 95%CI: [6.79-8.13]
- Median PFS: 9.59 mo, 95%CI: [8.49-10.59]

Stratified HR = 0.61; 95%CI [0.50-0.75]

\(p < 0.0001 \)

IFCT 0701 ‘MAPS’ randomized phase 3 trial

Presented By Gerard Zalcman at 2015 ASCO Annual Meeting
Efficacy: ITT Overall Survival (OS)

median follow-up = 39.4 mo [11.0-83.0]

- Median Overall Survival: 16.07 mo, 95%CI: [14.00-17.93]
- Median Overall Survival: 18.82 mo, 95%CI: [15.90-22.62]

Stratified HR=0.76; 95%CI [0.61-0.94]

\[p=0.0127 \]

IFCT0701 ‘MAPS’ randomized phase 3 trial

Presented By Gerard Zalcman at 2015 ASCO Annual Meeting
KEYNOTE-028 (NCT02054806): Phase 1b Multi-Cohort Study of Pembrolizumab for PD-L1+ Advanced Solid Tumors

Pembrolizumab 10 mg/kg IV Q2W

Response Assessment

- Complete or partial response or stable disease: Treat for 24 months or until progression or intolerable toxicity.
- Confirmed progressive disease or unacceptable toxicity: Discontinue pembrolizumab.

*Response assessment: Every 8 weeks for the first 6 months; every 12 weeks thereafter

Primary end points: ORR per RECIST v1.1 and safety

Secondary end points: PFS, OS, duration of response

Power: With ~22 subjects enrolled, this study provides 80% power to demonstrate that the ORR exceeds 10%

*If clinically stable, patients are to remain on pembrolizumab until progressive disease is confirmed on a second scan performed ≥4 weeks later. Patients who experience progression may be eligible for up to 1 year of additional pembrolizumab if no other anticancer therapy is received.

Alley AACR 2015_19Apr15
Analysis of PD-L1 Expression

- Samples: archival or newly obtained core or excisional biopsy of a nonirradiated lesion
- Immunohistochemistry: performed at a central laboratory using a prototype assay and the 22C3 antibody clone
- Positivity: membranous PD-L1 expression in ≥1% of tumor and associated inflammatory cells or positive staining in stroma
- MPM cohort: of 80 evaluable samples, 38 PD-L1 positive (45.2%)

Examples of PD-L1 Staining in MPM Specimens from KEYNOTE-028

PD-L1 Negative PD-L1 Positive
Adverse Events of Special Interest

<table>
<thead>
<tr>
<th>Adverse Event, n (%)</th>
<th>Total N = 25</th>
<th>Resulted in Interruption</th>
<th>Resulted in Discontinuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash(^a) (all grade 1)</td>
<td>4 (16)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ALT/AST increased (grade 3)</td>
<td>1 (4)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hypersensitivity (grade 2)</td>
<td>1 (4)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Iridocyclitis (uveitis) (grade 2)</td>
<td>1 (4)</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

\(^a\)Includes maculopapular rash.
Analysis cut-off date: January 20, 2015.
Antitumor Activity
(RECIST v1.1, Investigator Review)

<table>
<thead>
<tr>
<th>Best Overall Response</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete response</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Partial response(^a)</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>Stable disease</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>No assessment(^b)</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Objective response rate: 28% (95% CI, 12-49)
Disease control rate: 76% (95% CI, 55-91)

\(^a\)Includes confirmed and unconfirmed responses.
\(^b\)Patients who discontinued therapy before the first post-treatment scan due to progressive disease.
Analysis cut-off date: January 20, 2015.
Maximum Percentage Change From Baseline in Target Lesionsa (RECIST v1.1, Investigator Review)

aIncludes patients with \geq1 postbaseline tumor assessment ($n = 23$). Analysis cut-off date: January 20, 2015.
Level of PD-L1 Expression and Response

- Using prototype IHC assay, no relationship between level of PD-L1 expression on tumor and immune cells within tumor nests and frequency of response
 - One-sided $P = 0.284$ by logistic regression

Patients were eligible for enrollment if they had PD-L1 expression in $\geq 1\%$ of tumor or immune cells in tumor nests or staining in the stroma.
Data cutoff date: June 24, 2015.
THYMIC EPITHELIAL TUMORS
Phase II studies in pretreated patients with TETs

<table>
<thead>
<tr>
<th>Author</th>
<th>Drug</th>
<th>Total #</th>
<th>Thymomas</th>
<th>RR (%)</th>
<th>mPFS (m)</th>
<th>mOS (m)</th>
<th>Thymic carcinoma</th>
<th>RR (%)</th>
<th>mPFS (m)</th>
<th>mOS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loehrerr ASCO 2006</td>
<td>Pemetrexed</td>
<td>27</td>
<td>16</td>
<td>17</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmieri Future Oncol 2014</td>
<td>Capecitabine + gemcitabine</td>
<td>30</td>
<td>22</td>
<td>40 (combined)</td>
<td>11 (combined)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakelee ASCO 2015</td>
<td>Amrubin</td>
<td>33</td>
<td>14</td>
<td>29</td>
<td>8.7</td>
<td>NR</td>
<td></td>
<td>19</td>
<td>11</td>
<td>8.5</td>
</tr>
<tr>
<td>Loehrerr JCO 2004</td>
<td>Octreotide + prednisone</td>
<td>38</td>
<td>32</td>
<td>38</td>
<td>8.8</td>
<td>NR</td>
<td>5 + 1 carcinoid</td>
<td>0</td>
<td>4.5</td>
<td>23.4</td>
</tr>
<tr>
<td>Palmieri Cancer 2002</td>
<td>Octreotide + prednisone</td>
<td>16</td>
<td>13</td>
<td>38</td>
<td>ND</td>
<td>ND</td>
<td>3</td>
<td>33</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Kurup ASCO 2005</td>
<td>Gefitinib</td>
<td>26*</td>
<td>19</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>7</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Bedano ASCO 2008</td>
<td>Erlotinib + Bevacizumab</td>
<td>18</td>
<td>11</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>7</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Salter ASCO 2008</td>
<td>Imatinib</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Giaccone JTO 2009</td>
<td>Imatinib</td>
<td>7**</td>
<td>2B3</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>5</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Palmieri CPP 2012</td>
<td>Imatinib</td>
<td>15***</td>
<td>12</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>3</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Giaccone JCO 2011</td>
<td>Belinostat</td>
<td>41</td>
<td>25</td>
<td>8</td>
<td>11.4 TTP</td>
<td>NR (>29.3)</td>
<td>16</td>
<td>0</td>
<td>2.7 TTP</td>
<td>12.4</td>
</tr>
<tr>
<td>Gubens Lung Cancer 2015</td>
<td>Saracatinib</td>
<td>21</td>
<td>12</td>
<td>0</td>
<td>5.7</td>
<td>37.5</td>
<td>9</td>
<td>0</td>
<td>3.6</td>
<td>6.7</td>
</tr>
<tr>
<td>Thomas Lancet Oncol 2015</td>
<td>Sunitinib</td>
<td>41</td>
<td>16</td>
<td>6</td>
<td>8.5</td>
<td>15.5</td>
<td>25</td>
<td>26</td>
<td>7.2</td>
<td>NR (>17)</td>
</tr>
<tr>
<td>Zucale ASCO 2014</td>
<td>Everolimus</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>NR (>12.4)</td>
<td>NR</td>
<td>19</td>
<td>21</td>
<td>5.5</td>
<td>18.6</td>
</tr>
<tr>
<td>CDK-125-006</td>
<td>Milciclib</td>
<td>58</td>
<td>14 B3</td>
<td>0</td>
<td>8.9</td>
<td>53.6</td>
<td>44</td>
<td>6.8</td>
<td>4.8</td>
<td>24.2</td>
</tr>
</tbody>
</table>
Thymic carcinoma
Response Rate: 26% (6/23)

Thymoma
Response Rate: 6% (1/16)

Thomas A. et al. Lancet Oncol. 2015
Sunitinib in TETs: progression-free and overall survival
PD-L1 immunohistochemistry in TETs

<table>
<thead>
<tr>
<th>Study</th>
<th>Antibody</th>
<th>Definition of Positive</th>
<th>Positive thymomas</th>
<th>Positive thymic carcinomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown 2003</td>
<td>Ab 29E.5A9 or 29E.2A3</td>
<td>Not stated</td>
<td>81% (21/26)</td>
<td>88% (7/8)</td>
</tr>
<tr>
<td>Padda 2015</td>
<td>rabbit MoAb clone 15</td>
<td>High intensity</td>
<td>68% (44/65)</td>
<td>75% (3/4)</td>
</tr>
<tr>
<td>Naidoo ASCO 2015</td>
<td>rabbit MoAb E1L3N</td>
<td>≥ 25% tumor cells positive</td>
<td>94% (11/12)</td>
<td>34% (4/12)</td>
</tr>
<tr>
<td>Katsuya ASCO 2015</td>
<td>rabbit MoAb E1L3N</td>
<td>H-score ≥3</td>
<td>67% (6/9)</td>
<td>41% (7/17)</td>
</tr>
<tr>
<td>Katsuya 2015</td>
<td>rabbit MoAb E1L3N</td>
<td>H-score ≥3</td>
<td>23% (22/101)</td>
<td>70% (26/38)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>49% (104/213)</td>
<td>59% (47/79)</td>
</tr>
</tbody>
</table>
Pembrolizumab in Thymic Carcinoma (NCT02364076)

- **Main eligibility:**
 - failure on prior chemotherapy
 - no autoimmune disorders
- **Therapy:** 2mg/kg q3w
- **Correlative studies:**
 - NGS
 - CRC
 - PD-L1 expression
- **Accrual:**
 - started in March 2015
 - 23 patients
Patient #4 before and after 2 cycles