CALOR Trial of Adjuvant Chemotherapy for Local or Regional Recurrence of Breast Cancer

For more visit ResearchToPractice.com/5MJCSABCS2013
CME INFORMATION

OVERVIEW OF ACTIVITY

The annual San Antonio Breast Cancer Symposium (SABCS) is unmatched in its significance with regard to the advancement of breast cancer treatment. This unique conference provides many clinicians and scientists from around the world a forum for discussing critical issues in the prevention and management of breast cancer. Therefore, SABCS is targeted by many members of the clinical research community as the optimal time to unveil new clinical data. This creates an environment in which yearly published results from a plethora of ongoing clinical trials lead to the emergence of new therapeutic agents and changes in the indications for existing treatments across all breast cancer subtypes.

Although SABCS currently offers online access to the vast majority of the poster and plenary presentations from the annual meeting, the absence of expert assessment concerning practical applications may yield confusion among community oncologists who are challenged almost daily to appropriately apply a multitude of scientific findings across diverse tumors. Thus, identification of those data sets with immediate or impending relevance to the delivery of quality breast cancer care, in conjunction with professional commentary to address resultant practice ambiguity, may prove vastly beneficial to those physicians who are unable to make the annual pilgrimage to San Antonio. To bridge the gap between research and patient care, this CME activity will deliver a serial review of the most important emerging data sets from the latest SABCS, including expert perspectives on how these new evidence-based concepts can and should be incorporated into on- and off-protocol patient care. This activity will assist medical oncologists, radiation oncologists, breast/general surgeons, nurses and other healthcare professionals in the formulation of optimal clinical management strategies and the timely application of new research findings to best-practice patient care.

LEARNING OBJECTIVES

- Evaluate the impact of adjuvant chemotherapy on survival for patients with isolated local and regional recurrence of breast cancer, and apply this information to patient care.
- Assess the benefits and side effects of adding bevacizumab to taxane- or anthracycline-based chemotherapy in the adjuvant setting for triple-negative breast cancer.
- Consider the clinical utility of eribulin mesylate as a treatment option in comparison to capecitabine for patients with previously treated locally advanced or metastatic breast cancer based on recent Phase III trial results.
- Describe the early efficacy and toxicity data from the ongoing trial investigating eribulin mesylate as first-line therapy for locally recurrent or metastatic HER2-negative breast cancer.

ACCREDITATION STATEMENT

Research To Practice is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

CREDIT DESIGNATION STATEMENT

Research To Practice designates this enduring material for a maximum of 1 AMA PRA Category 1 Credit™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

HOW TO USE THIS CME ACTIVITY

This CME activity contains slides and edited commentary. To receive credit, the participant should review the slide presentations, read the commentary, complete the Post-test with a score of 75% or better and fill out the Educational Assessment and Credit Form located at ResearchToPractice.com/5MJC5SABCS2013/4/CME.

CONTENT VALIDATION AND DISCLOSURES

Research To Practice (RTP) is committed to providing its participants with high-quality, unbiased and state-of-the-art education. We assess potential conflicts of interest with faculty, planners and managers of CME activities. Real or apparent conflicts of interest are identified and resolved through a conflict of interest resolution process. In addition, all activity content is reviewed by both a member of the RTP scientific staff and an external, independent physician reviewer for fair balance, scientific objectivity of studies referenced and patient care recommendations.

FACULTY — The following faculty (and their spouses/partners) reported real or apparent conflicts of interest, which have been resolved through a conflict of interest resolution process:

Kimberly L Blackwell, MD
Professor of Medicine
Director, Breast Cancer Program
Duke Cancer Institute
Durham, North Carolina
Advisory Committee; Eisai Inc, Novartis Pharmaceuticals
Corporation; Consulting Agreements: Novartis Pharmaceuticals
Corporation, Xcenda; Speakers Bureau: Amgen Inc, Bristol-Myers
Squibb Company, Genomic Health Inc, Novartis Pharmaceuticals
Corporation.

Lisa A Carey, MD
Richardson and Marilyn Jacobs Preyer Distinguished Professor for
Breast Cancer Research
Chief, Division of Hematology and Oncology
Physician-in-Chief North Carolina Cancer Hospital
Associate Director for Clinical Research
Lineberger Comprehensive Cancer Center
Chapel Hill, North Carolina

Advisory Committee, Consulting Agreements and Speakers
Bureau: Amgen Inc, Bristol-Myers Squibb Company, Genentech
BioOncology, Novartis Pharmaceuticals Corporation, Pfizer
Inc, Sanofi; Research Support: Genentech BioOncology,
GlaxoSmithKline, Sanofi.

Edith A Perez, MD
Deputy Director at Large, Mayo Clinic Cancer Center
Group Vice Chair, Alliance of Clinical Trials in Oncology
Mayo Clinic
Jacksonville, Florida
Contracted Research: Genentech BioOncology, Genomic Health
Inc, GlaxoSmithKline.

EDITOR — Dr Love is president and CEO of Research To
Practice, which receives funds in the form of educational
grants to develop CME activities from the following commercial
interests: AbbVie Inc, Algeta US, Allos Therapeutics, Amgen Inc,
ArQule Inc, Astellas, Aveo Pharmaceuticals, Bayer HealthCare
Pharmaceuticals, Biodex Inc, Biogen Idec, Boehringer Ingelheim
Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene
Corporation, Daiichi Sankyo Inc, Dendreon Corporation, Eisai
Inc, EMD Serono Inc, Foundation Medicine Inc, Genentech

RESEARCH TO PRACTICE STAFF AND EXTERNAL REVIEWERS — The scientific staff and reviewers for Research To Practice have no real or apparent conflicts of interest to disclose.

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration. Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

This activity is supported by educational grants from Eisai Inc, Genentech BioOncology and Genomic Health Inc.

Hardware/Software Requirements:
A high-speed Internet connection
A monitor set to 1280 x 1024 pixels or more
Internet Explorer 7 or later, Firefox 3.0 or later, Chrome, Safari 3.0 or later
Adobe Flash Player 10.2 plug-in or later
Adobe Acrobat Reader
(Optional) Sound card and speakers for audio

Last review date: April 2013
Expiration date: April 2014
A Practice-Changing Paper on Adjuvant Chemotherapy After Surgical Excision of Local Recurrence and Other San Antonio Highlights

To go directly to slides and commentary for this issue, click here.

Last June at ASCO, Dr Sandra Swain presented results from one of the most anticipated trials ever introduced by a generation of clinical scientists focused on adjuvant chemotherapy for breast cancer. NSABP-B-38 was launched in 2004 after the groundbreaking CALGB-9741 study documenting the benefit of dose-dense AC → paclitaxel, and it accrued 4,894 patients in an attempt to determine if that regimen with or without gemcitabine yielded better outcomes than TAC. Perhaps even more striking than the results of this trial (all 3 arms had similar efficacy) was that by the time it matured, much of the research community was indifferent about the outcome, having already diverted its full attention to the new world of targeted and novel agents.

As an enlightened thinker and President of ASCO, Dr Swain may have as much to say about biologically driven cancer therapy as anyone, but when I recently interviewed her for an upcoming audio program, among the fascinating topics we explored was a somewhat unexpected paper from San Antonio that may turn out to be one of the most clinically meaningful data sets on adjuvant chemotherapy in quite some time. The CALOR trial was a collaboration between Dr Swain’s NSABP and the BIG and IBCSG groups and asked the logical but pretty much unaddressed question of whether patients with a local recurrence in the breast or chest wall who have been rendered clinically disease free by surgical excision would benefit from the addition of “pseudoadjuvant” chemotherapy.

The study demonstrated that physician’s choice chemotherapy yielded similar benefits to traditional adjuvant treatment (DFS HR 0.59, \(p = 0.0455 \); OS HR 0.41, \(p = 0.02 \)), but unfortunately the study was underpowered with a final accrual of 162 patients compared to the original goal of 977. Importantly, most of the benefit was observed in individuals with ER-negative tumors, and one wonders if these data will lead to studies of genomic assays like Oncotype on local recurrence, a practice that NSABP chair Dr Norman Wolmark already utilizes clinically.
Although few breast cancer mavens have adopted Dr Wolmark’s next-generation strategy, most — including Dr Swain — have suddenly changed their algorithms and now carefully consider postop chemotherapy for patients with local recurrence. Of course, CALOR wasn’t the only interesting and potentially applicable chemo-related data set we saw in San Antonio, and the following help further define what we know and don’t know:

301 trial of eribulin versus capecitabine

Eribulin — a sea sponge-derived microtubule inhibitor — entered US practice in 2010 as late-line treatment for metastatic disease and, as is common across all cancer medicine, significant interest developed in potentially moving the agent up in the treatment sequence. At San Antonio we were treated to the results of those efforts in the form of a major Phase III report comparing the drug to perhaps the most commonly used cytotoxic after a taxane, capecitabine. Although the hope was that eribulin would show greater efficacy, in fact the findings were generally quite similar except perhaps in patients with ER-negative tumors, for whom a trend was evident favoring eribulin.

To get a sense of what these findings — and those from a related Phase II SABCS data set with eribulin up front — mean, we queried the 8 investigators participating in our recent breast cancer think tank. Dr Lisa Carey did a good job capsulizing the perspectives of many in the room by stating, “This was not a disappointment. The study was moving a drug that we all have become comfortable with in the very late-line setting to an earlier setting, and if it is as good as a drug like capecitabine, then it is another option with a totally different toxicity profile. I found this to be a useful study and one that helps with practice.”

On the flip side, there was unanimity among the think tank faculty that the exact sequence of these agents is probably not consequential in the long run and often decisions are made based on toxicity, method of administration, patient preferences and convenience. Importantly, however, several investigators stated they sometimes lean more toward capecitabine for older patients with ER-positive, HER2-negative tumors and agents like eribulin for triple-negative disease.

Related to the issue of sequencing multiple agents in the metastatic setting, at our CME satellite symposium in San Antonio, Dr George Sledge stated his belief that chemotherapy is often overused at the end of life and is a key component of “futile care.” Although arguments can be made for either side of the issue, this Saturday in Washington DC at the annual Oncology Nursing Society Congress we are going to discuss the case of a 54-year-old woman treated at Dana-Farber who in June 2012 made the difficult decision between going to hospice and taking one more shot at chemo. She ultimately elected to go for fifth-line therapy and experienced a partial remission with minimal toxicity that continues to this time, and the patient was able to spend the summer in Cape Cod watching her grandchildren continue to grow. Which agent
the patient received is not as important as the fact that this case both exemplifies the complexity of Dr Sledge’s comment and supports the notion that chemotherapy can and still does play an important role in providing patients with best-quality care.

BEATRICE: Adjuvant chemotherapy/bevacizumab (bev)

At SABCS we saw the first presentation of the **BEATRICE trial** evaluating adjuvant bev with a physician’s choice taxane- and/or anthracycline-based regimen in patients with triple-negative disease. Given the diminished recent role of bev in the metastatic setting and the well-publicized failure of the adjuvant trial in colorectal cancer, these negative results were not too surprising. Interestingly, Dr Wolmark is still frustrated that the signal of an impressive reduction in recurrence observed when bev was on board in the NSABP-C-08 colon cancer trial has not been further pursued. BEATRICE, like C-08, used one year of bev, and Norm continues to believe that more benefit would be seen with a greater duration of treatment, although this is not likely to be studied.

Next...The final issue of this SABCS-focused series: Late reports from the first generation of adjuvant trastuzumab trials and other related presentations.

Neil Love, MD
Research To Practice
Miami, Florida
CALOR Trial of Adjuvant Chemotherapy for Local or Regional Recurrence of Breast Cancer

Presentation discussed in this issue

Slides from a presentation at SABCS 2012 and transcribed comments from recent interviews with Kimberly L Blackwell, MD (1/8/13) and Lisa A Carey, MD (1/17/13)

Chemotherapy Prolongs Survival for Isolated Local or Regional Recurrence of Breast Cancer: The CALOR Trial (Chemotherapy as Adjuvant for Locally Recurrent Breast Cancer; IBCSG 27-02, NSABP B-37, BIG 1-02)

Aebi S et al. Proc SABCS 2012; Abstract S3-2.
Background

- Patients with isolated local or regional recurrences (ILRR) of breast cancer (BC) have a high risk of developing distant metastases and death from BC.
- The results of the randomized Phase III SAKK 23/82 trial comparing tamoxifen to observation demonstrated that tamoxifen significantly improved the postrecurrence disease-free survival (DFS) for patients with ER-positive BC after local treatment of ILRR (*Ann Oncol* 2003;14:1215).
- However, no prospective randomized trial of adjuvant chemotherapy for ILRR has been published in the past 30 years.
- **Study objective:** To investigate the impact of chemotherapy on DFS and overall survival (OS) after ILRR.

Aebi S et al. *Proc SABCS 2012;Abstract S3-2.*

Phase III CALOR Trial Design

<table>
<thead>
<tr>
<th>Eligibility (n = 162)</th>
<th>Chemotherapy (n = 85)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First ipsilateral local and/or regional recurrence after surgery</td>
<td>+ endocrine therapy (ET) for ER+ and/or PR+ BC</td>
</tr>
<tr>
<td>Complete gross excision of recurrence</td>
<td>+ optional HER2-directed therapy</td>
</tr>
<tr>
<td>No evidence of supraclavicular lymph nodes or distant metastasis</td>
<td></td>
</tr>
</tbody>
</table>

R

- Patients with resected ILRR were stratified according to prior chemotherapy, ER and/or PR status of the recurrent tumor and location of recurrence prior to randomization.
- Chemotherapy chosen by investigators: ≥2 drugs, 3-6 mo of therapy
- Radiation therapy mandatory for patients with microscopically involved margins

Aebi S et al. *Proc SABCS 2012;Abstract S3-2.*
Statistical Considerations

- Original sample size for hazard ratio (HR) of 0.74:
 - 977 patients, 347 DFS events
- Due to low accrual rate and newer, more effective chemotherapies, amendment 3 in 2008 resulted in a revised sample size for HR of 0.6:
 - 265 patients, 124 events
 - 5-year DFS for the observation group = 50%
 - $1 - \beta = 0.8$, log-rank $\alpha = 0.05$, 1 interim analysis
- On January 31, 2010, the trial was closed with 162 patients (no interim analysis).
- Analysis was conducted when the median follow-up reached 4 years, with a minimum follow-up of 2.5 years.

Aebi S et al. Proc SABCS 2012;Abstract S3-2.

DFS: Overall Population

With permission from Aebi S et al. Proc SABCS 2012;Abstract S3-2.
DFS by ER Status

ER+
- 5-yr DFS: 70%
- 69%

<table>
<thead>
<tr>
<th>Pts</th>
<th>Events</th>
<th>HR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>56</td>
<td>16</td>
<td>0.94</td>
<td>0.47-1.89</td>
</tr>
<tr>
<td>No CT</td>
<td>48</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ER-
- 5-yr DFS: 67%
- 35%

<table>
<thead>
<tr>
<th>Pts</th>
<th>Events</th>
<th>HR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>29</td>
<td>8</td>
<td>0.32</td>
<td>0.14-0.73</td>
</tr>
<tr>
<td>No CT</td>
<td>29</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Univariate interaction term: Treatment x ER: \(p = 0.044 \)

With permission from Aebi S et al. *Proc SABCS* 2012; Abstract S3-2.

Multivariate Analysis of DFS

<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER status (positive/negative)</td>
<td>0.76</td>
<td>0.32</td>
</tr>
<tr>
<td>Location of ILRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Mastectomy scar or chest wall</td>
<td>0.90</td>
<td>0.79</td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Prior chemotherapy (yes/no)</td>
<td>1.002</td>
<td>0.99</td>
</tr>
<tr>
<td>Interval from primary surgery (per y)</td>
<td>0.91</td>
<td>0.002</td>
</tr>
<tr>
<td>Treatment (chemotherapy/none)</td>
<td>0.50</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- Interaction term:
 - Treatment x ER in ILRR: \(p = 0.05 \)

Aebi S et al. *Proc SABCS* 2012; Abstract S3-2.
OS: Overall Population

- 5-yr OS
 - 88%
 - 76%

<table>
<thead>
<tr>
<th></th>
<th>Pts</th>
<th>Deaths</th>
<th>HR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy (CT)</td>
<td>85</td>
<td>9</td>
<td>0.41</td>
<td>0.19-0.89</td>
<td>0.02</td>
</tr>
<tr>
<td>No Chemotherapy (no CT)</td>
<td>77</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Years from Randomization

With permission from Aebi S et al. *Proc SABCS 2012; Abstract S3-2.*

OS by ER Status

ER+

- 5-yr OS
 - 94%
 - 80%

<table>
<thead>
<tr>
<th></th>
<th>Pts</th>
<th>Deaths</th>
<th>HR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy (CT)</td>
<td>56</td>
<td>4</td>
<td>0.40</td>
<td>0.12-1.28</td>
<td>0.12</td>
</tr>
<tr>
<td>No Chemotherapy (no CT)</td>
<td>48</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pts</th>
<th>Deaths</th>
<th>HR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy (CT)</td>
<td>29</td>
<td>5</td>
<td>0.43</td>
<td>0.15-1.24</td>
<td>0.12</td>
</tr>
<tr>
<td>No Chemotherapy (no CT)</td>
<td>29</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ER-

- 5-yr OS
 - 79%
 - 69%

With permission from Aebi S et al. *Proc SABCS 2012; Abstract S3-2.*
Multivariate Analysis of OS

<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER status (positive/negative)</td>
<td>0.76</td>
<td>0.49</td>
</tr>
<tr>
<td>Location of ILRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Mastectomy scar or chest wall</td>
<td>0.73</td>
<td>0.55</td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>0.75</td>
<td>0.65</td>
</tr>
<tr>
<td>Prior chemotherapy (yes/no)</td>
<td>1.97</td>
<td>0.12</td>
</tr>
<tr>
<td>Interval from primary surgery (per y)</td>
<td>0.80</td>
<td>0.0008</td>
</tr>
<tr>
<td>Treatment (chemotherapy/none)</td>
<td>0.37</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Aebi S et al. *Proc SABCS* 2012; Abstract S3-2.

Author Conclusions

- Adjuvant chemotherapy reduced the risk of:
 - DFS events by 41% (ER-positive, 6%; ER-negative, 68%)
 - Death by 59% (ER-positive, 60%; ER-negative, 57%)
- Adjuvant chemotherapy should be recommended for patients with completely resected isolated local or regional recurrence of breast cancer:
 - The data are strongest for patients with ER-negative recurrences.
 - Longer follow-up is needed for patients with ER-positive recurrences.
- The pattern of locoregional recurrences and the impact of chemotherapy on second ILRR was presented as a poster at SABCS 2012 (Abstract P6-07-06).

Aebi S et al. *Proc SABCS* 2012; Abstract S3-2.
Investigator Commentary: CALOR — A Phase III Trial Evaluating Chemotherapy for ILRR of Breast Cancer

It’s easy to assume that local or regional recurrence of BC occurs because the primary tumor was not properly resected or that the patient should have received radiation therapy. The answer to the question of how much systemic therapy a patient should receive for local or regional recurrence is unknown. It is impressive that a study that didn’t complete its full accrual demonstrated a survival benefit. I believe that local or regional management and systemic treatment of BC are complementary to each other. Before the results of this study were published, I would have stated that local BC recurrence was a local/regional problem.

Interview with Kimberly L Blackwell, MD, January 8, 2013

This is a practice-changing study that had a difficult time with accrual of patients. This trial ran the risk of being underpowered to find a statistical difference. CALOR demonstrated impressive and statistically significant improvements in DFS and OS with adjuvant chemotherapy versus no chemotherapy. However, I would view the subset analyses showing that patients with ER-negative BC seemed to benefit more than those with ER-positive BC with caution because these tumors took 5 years to recur. Because patients with ER-positive BC are likely receiving ET, these results may be premature in this subpopulation.

Interview with Lisa A Carey, MD, January 17, 2013