Carfilzomib/Pomalidomide and Dexamethasone for Relapsed/Refractory MM
CME INFORMATION

OVERVIEW OF ACTIVITY

Each year, thousands of clinicians, basic scientists and other industry professionals sojourn to major international oncology conferences, like the American Society of Hematology (ASH) annual meeting, to hone their skills, network with colleagues and learn about recent advances altering state-of-the-art management in hematologic oncology. As such, these events have become global stages where exciting science, cutting-edge concepts and practice-changing data emerge on a truly grand scale. This massive outpouring of information has enormous benefits for the hematologic oncology community, but the truth is it also creates a major challenge for practicing oncologists and hematologists.

Although original data are consistently being presented and published, the flood of information unveiled during a major academic conference is unprecedented and leaves in its wake an enormous volume of new knowledge that practicing oncologists must try to sift through, evaluate and consider applying. Unfortunately and quite commonly, time constraints and an inability to access these data sets leave many oncologists struggling to ensure that they’re aware of crucial practice-altering findings. This creates an almost insurmountable obstacle for clinicians in community practice because they are not only confronted almost overnight with thousands of new presentations and data sets to consider but they are also severely restricted in their ability to review and interrogate the raw findings.

To bridge the gap between research and patient care, this CME activity will deliver a serial review of the most important emerging data sets on novel therapeutic options in the treatment of multiple myeloma (MM) and Waldenström’s macroglobulinemia (WM) from the latest ASH meeting, including expert perspectives on how these new evidence-based concepts may be applied to routine clinical care. This activity will assist medical oncologists, hematologists, hematology-oncology fellows and other healthcare professionals in the formulation of optimal clinical management strategies and the timely application of new research findings to best-practice patient care.

LEARNING OBJECTIVES

- Integrate recent clinical research findings with proteasome inhibitors and immunomodulatory agents into the development of individualized induction and maintenance treatment strategies for patients with MM.
- Develop an understanding of emerging efficacy and side-effect data with novel agents and combination regimens — including anti-CD38 antibodies and AKT, BTK, KSP and novel proteasome inhibitors — under evaluation for newly diagnosed and relapsed/refractory MM and WM and, where appropriate, facilitate patient access to ongoing trials of these agents.
- Appraise recent clinical research findings on the efficacy and safety of novel proteasome inhibitor- and/or BTK inhibitor-based therapeutic strategies for WM, and consider this information for the treatment of patients.

ACCREDITATION STATEMENT

Research To Practice is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

CREDIT DESIGNATION STATEMENT

Research To Practice designates this enduring material for a maximum of 2.5 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

HOW TO USE THIS CME ACTIVITY

This CME activity contains slides and edited commentary. To receive credit, the participant should review the slide presentations, read the commentary, complete the Post-test with a score of 75% or better and fill out the Educational Assessment and Credit Form located at ResearchToPractice.com/5MJCASH2014/5/CME.

CONTENT VALIDATION AND DISCLOSURES

Research To Practice (RTP) is committed to providing its participants with high-quality, unbiased and state-of-the-art education. We assess potential conflicts of interest with faculty, planners and managers of CME activities. Real or apparent conflicts of interest are identified and resolved through a conflict of interest resolution process. In addition, all activity content is reviewed by both a member of the RTP scientific staff and an external, independent physician reviewer for fair balance, scientific objectivity of studies referenced and patient care recommendations.

FACULTY — The following faculty (and their spouses/partners) reported real or apparent conflicts of interest, which have been resolved through a conflict of interest resolution process:

Rafael Fonseca, MD
Getz Family Professor of Cancer
Chair, Department of Internal Medicine
Mayo Clinic Arizona
Scottsdale, Arizona

Consulting Agreements: Amgen Inc, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, Celgene Corporation, Millennium: The Takeda Oncology Company, Novartis Pharmaceuticals Corporation, Onyx Pharmaceuticals Inc; Contracted Research: Amgen Inc, Celgene Corporation.

Sagar Lonial, MD
Professor
Vice Chair of Clinical Affairs
Director of Translational Research, B-Cell Malignancy Program
Department of Hematology and Medical Oncology
Winship Cancer Institute
Emory University School of Medicine
Atlanta, Georgia

Advisory Committee and Consulting Agreements: Bristol-Myers Squibb Company, Celgene Corporation, Lilly, Millennium: The Takeda Oncology Company, Novartis Pharmaceuticals Corporation, Onyx Pharmaceuticals Inc, Sanofi.

EDITOR — Dr Love is president and CEO of Research To Practice, which receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Algeta US, Amgen Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, Biodexis Inc, Biogen Idec, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Daiichi Sankyo Inc, Dendreon Corporation, Eisai Inc, Exelixis Inc, Genentech BioOncology, Genomic Health Inc, Gilead Sciences Inc, Incyte Corporation, Lilly, Medivation Inc, Merck, Millennium: The Takeda Oncology Company, Novartis Pharmaceuticals Corporation, Novocure, Onyx Pharmaceuticals Inc, Prometheus Laboratories Inc, Regeneron Pharmaceuticals, Sanofi, Seattle Genetics, Spectrum Pharmaceuticals Inc, Teva Oncology and VisionGate Inc.
RESEARCH TO PRACTICE STAFF AND EXTERNAL REVIEWERS — The scientific staff and reviewers for Research To Practice have no real or apparent conflicts of interest to disclose.

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration. Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

This activity is supported by educational grants from Boehringer Ingelheim Pharmaceuticals Inc, Celgene Corporation, Genentech BioOncology/Biogen Idec, Millennium: The Takeda Oncology Company, Onyx Pharmaceuticals Inc, Seattle Genetics and Spectrum Pharmaceuticals Inc.

Hardware/Software Requirements:
A high-speed Internet connection
A monitor set to 1280 x 1024 pixels or more
Internet Explorer 7 or later, Firefox 3.0 or later, Chrome, Safari 3.0 or later
Adobe Flash Player 10.2 plug-in or later
Adobe Acrobat Reader
(Optional) Sound card and speakers for audio

Last review date: March 2014
Expiration date: March 2015
One might view current clinical research in multiple myeloma (MM) as being in a consolidation phase after the introduction of proteasome inhibitors, immunomodulatory drugs and bisphosphonates brought forth a huge wave of progress. This idea is reflected in many of the new MM reports presented in New Orleans, where we were treated to intriguing data attempting not only to help optimize the impact of our current tools but also to uncover novel agents that will launch a new era with even better outcomes. For this second MM issue of our ASH review series, Dr Rafael Fonseca comments on a handful of papers that help take the next step in what will hopefully be another quantum leap forward in this fascinating corner of oncology.

- **More on up-front carfilzomib/lenalidomide/dexamethasone (dex) (CRd)**

MM is only one of a number of tumor types in oncology today for which there is considerable interest in moving newly approved agents up earlier in the course of the disease. In this regard, we have already seen preliminary data from Andrzej Jakubowiak, and at ASH the NCI presented another major single-arm study evaluating induction CRd followed by maintenance therapy — in this case lenalidomide. As in the work presented by Dr Jakubowiak, in this study patients received long-term maintenance and transplant was optional, and with the extraordinary risk-benefit value of this regimen (near complete response [CR] or better in 73% of the 43 patients, 100% minimal residual disease negativity assessed by flow cytometry among 27 patients with near CR or stringent CR and no Grade 3 or 4 neuropathy), Dr Fonseca can foresee a time when treatment will be individualized based on depth of response, with transplant avoided in some patients and survival extended significantly. However, in terms of current practice, like most MM investigators Dr Fonseca believes that while preliminary data on this and similar regimens are very encouraging, carfilzomib should not be used up front outside of a trial setting and recommends that patients interested in this approach be referred to the major Intergroup study comparing CRd to RVD.
• **Carfilzomib/cyclophosphamide/dex (CCd) up front in elderly patients**

In the same vein as the previous study, another ASH data set reported on recent efforts to incorporate carfilzomib into popular and currently employed bortezomib-based up-front regimens. **This Phase II trial** looked at CCd (similar to CyBorD) induction in 55 evaluable patients aged 65 and over with newly diagnosed MM. The bottom line is that despite significant activity (47% near CR or better) and relatively good tolerability (14% of patients discontinued treatment because of toxicity, which is considerably fewer than in prior studies for elderly patients), Dr Fonseca — a major proponent of CyBorD — urges us all to hold off on CCd outside a clinical trial.

• **Pomalidomide (PoM)/carfilzomib/dex in relapsed/refractory (RR) disease**

Combining the 2 new kids on the block, POM and carfilzomib, always seemed like a natural next step, and at ASH we saw encouraging data with this appealing regimen. **A multicenter Phase I/II effort** for patients with heavily pretreated lenalidomide-refractory MM (a median of 5 prior treatments) resulted in a 70% overall response rate among 79 evaluable patients and a manageable toxicity profile. Even more, this report demonstrates that the regimen is not only a viable option in very advanced disease but also an approach that is of great interest in up-front trials.

In a related manner, ASH also featured **2 data sets** providing updates from trials evaluating POM with low-dose dex in RR disease. Dr Fonseca’s take-away from these presentations is that while patients with extensive prior treatment and adverse cytogenetic profiles often benefit from this therapy, myelosuppression in these individuals must be managed carefully with dose adjustments and growth factors.

• **An all-oral “RVD”**

For the past several years we have profiled the early development of the oral proteasome inhibitors ixazomib and oprozomib, and at ASH **Paul Richardson presented more data** from his Phase I/II study looking at ixazomib/lenalidomide/dex in previously untreated MM. This study, which evaluated twice-weekly ixazomib, revealed activity (94% response rate among 62 patients) similar to what is typically seen with RVD but slightly more peripheral neuropathy (PN) (Grade 3 in 5% of 64 patients) than has been observed in trials using weekly administration of this fascinating agent. Not surprisingly, Dr Fonseca is eagerly and optimistically awaiting the results of ongoing Phase III trials.

• **Cool new compounds**

For the immediate future most myeloma investigators like Dr Fonseca believe monoclonal antibodies represent the most likely path to dramatically catapult survival in this disease, and there is great hope that a rituximab-like agent may be identified. The 2 compounds we have heard the most about up to now are the anti-CD38 antibody daratumumab, which has garnered FDA breakthrough therapy status, and elotuzumab,
which is directed against human CS1 (a cell surface antigen glycoprotein that is highly expressed on MM cells) and appears to result in an R-squared-like synergy with lenalidomide.

However, for a disease diagnosed in “only” about 20,000 individuals a year in the United States, a stunning amount of active drug development is under way in MM, and at ASH we were provided with a preview of some of the agents and strategies we may be hearing a lot more about in the next few years:

– **SAR650984**

Similar to daratumumab, this **anti-CD38 antibody** was shown to have significant single-agent efficacy in patients with relapsed MM (31% response rate among 13 patients receiving the 10-mg/kg dose every 2 weeks) and minimal toxicity other than manageable infusion reactions. Dr Fonseca stated that “this is probably one of most important molecules for future MM therapy.”

– **Filanesib**

A report from a [Phase II trial](#) of this selective inhibitor of kinesin spindle protein alone or in combination with dex demonstrated a 15% response rate among 55 evaluable patients receiving the combination and manageable toxicity. What seems most exciting about this data set is that activity was absent in patients with high serum levels of α-1 acid glycoprotein (which binds the drug, making it unavailable), potentially opening the door for a predictive biomarker.

– **Afuresertib**

AKT is a critical signaling node in MM, and this [single-arm Phase IB trial](#) evaluated the potent AKT inhibitor afuresertib in combination with dex and bortezomib in 81 patients with relapsed or refractory disease. The overall response rate was 65% and the clinical benefit rate was 73% among 37 patients in the safety expansion cohort. The results are favorable enough to justify further study, but of particular interest was the demonstration of consistent increases in the levels of the phosphorylated form of the drug target in MM cells.

• Bonus feature: Two compelling data sets in Waldenström’s macroglobulinemia (WM)

WM is unusual in oncology in that investigators focused on both lymphomas and plasma cell disorders are involved in clinical research and patient care. Most importantly, borrowing from progress in both of these fields, the outlook for the 1,500 US patients diagnosed annually continues to improve as reflected in the following data sets:
– Carfilzomib
The lack of PN with carfilzomib, even in indirect comparison to weekly subcutaneous bortezomib, is particularly appealing in WM, in which PN is part of the disease biology. As such, this agent was evaluated in a Phase II study combining it with rituximab and dex for 31 patients with symptomatic WM. As reported at ASH, this combination resulted in a best overall response rate of 81% and significant IgM declines along with improved marrow profiles and hemoglobin levels. Even more important, PN of Grade 2 or higher was not reported, leading the authors to conclude that the regimen represents a “neuropathy-sparing approach” for the treatment of WM. In relation to these findings, Dr Fonseca verbalized his concern that the rarity of this disease has led to a dearth of FDA-approved therapies, making it a considerable challenge to obtain reimbursement for novel agents with proven patient benefit.

– Ibrutinib
Now approved for mantle-cell lymphoma and chronic lymphocytic leukemia, perhaps it should not be that big of a surprise that ibrutinib is effective in WM, especially since a somatic mutation (MYD88 L265P) that appears to support malignant growth through Bruton tyrosine kinase is present in more than 90% of these patients. Indeed, in this exciting Phase II study 51 of 63 patients (81%) had best overall responses — which were usually rapid, often with rising hematocrit and reductions in serum IgM — strongly suggesting that this agent is destined to have a critical role in the care of these patients.

Next up, we focus on papers in Hodgkin lymphoma and the rapidly emerging role of the antibody-drug conjugate brentuximab vedotin.

Neil Love, MD
Research To Practice
Miami, Florida
Carfilzomib/Pomalidomide and Dexamethasone for Relapsed/Refractory MM

Presentation discussed in this issue

Slides from a presentation at ASH 2013 and transcribed comments from a recent interview with Rafael Fonseca, MD (2/14/14)

A Multi-Center Phase I/II Trial of Carfilzomib and Pomalidomide with Dexamethasone (Car-Pom-d) in Patients with Relapsed/Refractory Multiple Myeloma

Background

- In a pivotal Phase II study, carfilzomib (Car), a novel proteasome inhibitor (PI), demonstrated single-agent activity in relapsed/refractory multiple myeloma (RRMM) (Blood 2012;120:2817).
 - Car received FDA approval for this indication in July 2012.
- Pomalidomide (Pom), an immunomodulatory agent (IMiD), is active in RRMM (Blood 2014;[Epub ahead of print]).
 - Pom received FDA approval for RRMM in February 2013.
- Preclinical and clinical data demonstrate that the combination of PIs with IMiDs can overcome resistance and improve response rates (Blood 2013;122:3122).
- Study objective: To determine the efficacy and safety of Car in combination with Pom and dexamethasone (Car-Pom-d) in RRMM.

3 + 3 Phase I Dose-Escalation Study* (Cohort Design)

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Car</th>
<th>Pom</th>
<th>Dexamethasone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort -1</td>
<td>27 mg/m²</td>
<td>3 mg</td>
<td>40 mg</td>
</tr>
<tr>
<td>Cohort 1+</td>
<td>27 mg/m²⁺</td>
<td>4 mg⁺</td>
<td>40 mg⁺</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>36 mg/m²</td>
<td>4 mg</td>
<td>40 mg</td>
</tr>
<tr>
<td>Cohort 3</td>
<td>45 mg/m²</td>
<td>4 mg</td>
<td>40 mg</td>
</tr>
<tr>
<td>Cohort 4</td>
<td>56 mg/m²</td>
<td>4 mg</td>
<td>40 mg</td>
</tr>
</tbody>
</table>

* Dose expansion at the maximum tolerated dose (MTD)
† Established as MTD
- All patients had lenalidomide (Len)-refractory MM
- Car dose on d1, 2 of cycle 1 for all cohorts was 20 mg/m²
- For all cohorts, dexamethasone dose was reduced to 20 mg after cycle 4

Ongoing Phase II Trial Design

Target accrual (n = 82)

Patients with RRMM
Prior Len with ≤25% response/progression during Tx or ≤60 d after completion of regimen containing Len at full dose or MTD for ≥2 cycles

Cycles 1-6: 28-day cycles

Car

1 2 8 9 15 16

Pom

1

Dexamethasone

1 8 15 22

- Car on d1, 2 of cycle 1 was 20 mg/m², escalated to 27 mg/m² on d8 of cycle 1
- ≥Cycle 7: Maintenance cycles with Car on d1, 2, 15, 16; Pom/dexamethasone unchanged
- Concomitant medications included antiviral and defined anticoagulation therapies
- **Primary endpoint:** Overall response rate (ORR) and safety

Response Rates

<table>
<thead>
<tr>
<th>Best response</th>
<th>n = 79</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>55 (70%)</td>
</tr>
<tr>
<td>Very good partial response (VGPR)</td>
<td>21 (27%)</td>
</tr>
<tr>
<td>Partial response (PR)</td>
<td>34 (43%)</td>
</tr>
<tr>
<td>Minimal response (MR)</td>
<td>10 (13%)</td>
</tr>
<tr>
<td>Stable disease (SD)</td>
<td>13 (16%)</td>
</tr>
<tr>
<td>Progressive disease (PD)</td>
<td>1 (1%)</td>
</tr>
</tbody>
</table>

- Clinical benefit rate: 83%
- The median duration of response for patients with VGPR or PR: 17.7 months

Responses by Cytogenetic Risk Status*

<table>
<thead>
<tr>
<th>Best response</th>
<th>High risk (n = 18)</th>
<th>Intermediate risk (n = 19)</th>
<th>Standard risk (n = 38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>78%</td>
<td>53%</td>
<td>74%</td>
</tr>
<tr>
<td>VGPR</td>
<td>22%</td>
<td>26%</td>
<td>32%</td>
</tr>
<tr>
<td>PR</td>
<td>56%</td>
<td>26%</td>
<td>42%</td>
</tr>
<tr>
<td>MR</td>
<td>17%</td>
<td>21%</td>
<td>8%</td>
</tr>
<tr>
<td>SD</td>
<td>6%</td>
<td>26%</td>
<td>16%</td>
</tr>
<tr>
<td>PD</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
</tr>
</tbody>
</table>

* mSmart risk classification; 4 patients with incomplete cytogenetics data
 • Responses were preserved in patients with high-risk FISH/cytogenetics

Survival Outcomes

<table>
<thead>
<tr>
<th></th>
<th>n = 79</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td></td>
</tr>
<tr>
<td>Median PFS</td>
<td>9.7 months</td>
</tr>
<tr>
<td>Median OS*</td>
<td>Not yet reached</td>
</tr>
<tr>
<td>Patients with del(17p)</td>
<td>n = 14</td>
</tr>
<tr>
<td>12-month PFS</td>
<td>57.9%</td>
</tr>
<tr>
<td>12-month OS</td>
<td>80%</td>
</tr>
</tbody>
</table>

PFS = progression-free survival; OS = overall survival
* Not yet reached at 18 months
 • PFS and OS were sustained independent of risk status

Select Adverse Events

<table>
<thead>
<tr>
<th>Condition</th>
<th>All grades</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>34%</td>
<td>22%</td>
<td>8%</td>
</tr>
<tr>
<td>Anemia</td>
<td>32%</td>
<td>16%</td>
<td>1%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>28%</td>
<td>8%</td>
<td>6%</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>4%</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>42%</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>28%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>16%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Skin, rash, pruritus</td>
<td>13%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Pneumonia*</td>
<td>11%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>6%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>3%</td>
<td>3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

*1 treatment-related Grade 5 pneumonia and pulmonary embolism occurred
- Toxicities were generally reversible and manageable

Author Conclusions

- The combination of Car-Pom-d is highly active in patients with heavily pretreated Len-refractory MM.
 - Patients had received a median of 5 prior lines of therapy.
 - 49% of patients had high- or intermediate-risk cytogenetics at baseline.
- Response rates, PFS and OS were preserved independent of the cytogenetic risk status.
- The Car-Pom-d regimen was well tolerated with no unexpected toxicities.
- Enrollment is nearly complete in the Phase II trial.
- Subsequent dose escalation of Car in a less heavily pretreated population of patients with 1 to 3 lines of prior therapy is planned.

Investigator Commentary: Phase I/II Study of Car-Pom-d in Patients with RRMM

We’re seeing patients who are seeking second opinions in our clinics after they have been exposed to all the active agents. A lot of empirical recommendations are being made, and I’m happy to know that we have some data in support of the treatment decisions. We have “community knowledge” that if an agent fails, its combination with another agent may result in responses. Multiple anecdotes exist for that. More often than not, the responses are short-lived and not all patients respond. This study is important because it enrolled patients with Len-refractory MM who have experienced progression on their most recent therapy. The patients on the Phase II study had Pom- and Car-naïve disease. The results demonstrated a VGPR rate of 27% and a PR rate of 43%, and 10 patients achieved MRs. The ORR was 70%, and the rate of ≥MR was 83%. These response rates are encouraging.

(Continued)

In addition, the toxicity profile of Car-Pom-d is manageable. This study provides objective data to support the idea of combining these agents for 2 reasons. First, these patients have exhausted some of the standard therapeutic options. Second, Pom is active in MM and it may be possible to move it further up front in the overall strategy for the treatment of MM. These results suggest that when no therapy is effective, Car-Pom-d is the next step.

Interview with Rafael Fonseca, MD, February 14, 2014