Year in Review

A CME monograph and speaker’s slide kit summarizing the year’s most important meeting presentations and journal articles

Multiple Myeloma: 2010-2011

Faculty
- William I Bensinger, MD
- Jeffrey L Wolf, MD
- Jeffrey A Zonder, MD

Editor
- Neil Love, MD

Contents
- Monograph
- CD with PowerPoint slide kit including expert commentary

Download PowerPoint files of this program at ResearchToPractice.com/YIRM11
Multiple Myeloma: 2010-2011

Yves Duval, MD
Research To Practice

OVERVIEW OF ACTIVITY

Multiple myeloma (MM) is a plasma cell neoplasm that accounts for approximately 10% of all hematologic cancers and carries with it a death rate to new cases ratio of 0.2:1 among the survivors. The American Cancer Society estimated that 17,350 new MM cases will occur in the United States in 2011, with an estimated 10,430 deaths. The treatment of MM has improved dramatically over the past decade, particularly with the advent of novel agents, and continues to be shaped by the optimal treatment of MM's both elderly and complex cases.

Knowledge of the many therapeutically advanced and changing practice standards in essential to ensuring optimal patient care. To bridge the gap between research and patient care, this MM CME activity uses the input of cancer experts and community physicians to frame a relevant discussion of recent research advances in myeloma that can be applied to the selection of optimal systemic therapy for patients with MM.

LEARNING OBJECTIVES

• Recognize the treatment-associated side effects of bortezomib, and offer patients accept
• Compare and contrast the benefits and risks of lenalidomide-and bortezomib-based induc
• Recognize the treatment-associated side effects of lenalidomide, and offer patients accept
• Identify MM patients who may benefit from the use of proteasome inhibitors
• Identify MM patients who may benefit from the use of immunomodulatory agents
• Integrate the information presented into the selection of optimal systemic therapy for patients with MM

CONTENT VALIDATION AND DISCLOSURES

Research To Practice (RTP) is committed to providing participants with high-quality, unbiased and state-of-the-art education. We assess potential conflicts of interest with faculty, planners and managers of CME activities. Real or apparent conflicts of interest, if identified, are resolved through a conflict of interest resolution process. In addition, all activity content is reviewed by both a member of the RTP scientific staff and an external independent physician reviewer for fair balance, scientific objectivity of studies referenced and clinical validity.

The attendees are expected to be the owners of the presented content and will not be construed as the authors of the presenters or grantors.

RESEARCH TO PRACTICE STAFF AND EXTERNAL REVIEWERS

The Takeda Oncology Company, Novartis Pharmaceuticals Corporation.

LEARNING OBJECTIVES

• Recognize the treatment-associated side effects of bortezomib, and offer patients accept
• Compare and contrast the benefits and risks of lenalidomide-and bortezomib-based induc
• Recognize the treatment-associated side effects of lenalidomide, and offer patients accept
• Identify MM patients who may benefit from the use of proteasome inhibitors
• Identify MM patients who may benefit from the use of immunomodulatory agents
• Integrate the information presented into the selection of optimal systemic therapy for patients with MM

CONTENT VALIDATION AND DISCLOSURES

Research To Practice (RTP) is committed to providing participants with high-quality, unbiased and state-of-the-art education. We assess potential conflicts of interest with faculty, planners and managers of CME activities. Real or apparent conflicts of interest, if identified, are resolved through a conflict of interest resolution process. In addition, all activity content is reviewed by both a member of the RTP scientific staff and an external independent physician reviewer for fair balance, scientific objectivity of studies referenced and clinical validity.

The attendees are expected to be the owners of the presented content and will not be construed as the authors of the presenters or grantors.

YEAR IN REVIEW

Multiple Myeloma: 2010-2011

Year in Review — Multiple Myeloma 2010-2011 Continuing Medical Education (CME) Information

COMMERCIAL SUPPORT

This activity is supported by educational grants from Celgene Corporation and Millennium: The Takeda Oncology Company.

PHARMACEUTICAL AGENTS DISCUSSED IN THIS PROGRAM

This educational activity includes discussion of published and/or investigational uses of the following pharmaceutical agents. Please refer to the applicable manufacturer’s product information and comparison with recommendations presented in this activity. When discussing off-label use of a pharmaceutical agent, suggestions in this activity should not be used by clinicians without evaluation of their patient’s conditions and possible contraindications or dangers in use, review of any applicable manufacturer’s product information and comparison with recommendations presented in this activity. When discussing off-label use of a pharmaceutical agent, suggestions in this activity should not be used by clinicians without evaluation of their patient’s conditions and possible contraindications or dangers in use, review of any applicable manufacturer’s product information and comparison with recommendations presented in this activity.

The compact disc, Internet content and accompanying printed material are protected by copyright. No part of this program may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or utilizing any information storage and retrieval system, without written permission from the copyright owner. Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied right to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.

Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.

Contact Information

For CME/CNE Information

Email: NEIL@researchtopractice.com

Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied right to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.

Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.

Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied right to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.

Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.

Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied right to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.

Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.

Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied right to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.

Copyright © 2011 Research To Practice. All rights reserved.

Participants grant Research To Practice the implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented is not meant to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or implied are the responsibility of the patient’s health care provider.
TABLE OF CONTENTS

EDITOR’S NOTE 2

BACK WHERE IT ALL BEGAN

PRIMARY PUBLICATIONS/PRESENTATIONS (ESSENTIAL) 4

SECONDARY PUBLICATIONS/PRESENTATIONS (RECOMMENDED) 6

KEY GRAPHICS AND FACULTY COMMENTARY RELATED TO PRIMARY PUBLICATIONS

8 CLINICAL TRIAL RESULTS WITH APPROVED AGENTS

36 MULTIPLE MYELOMA WORKUP AND RISK STRATIFICATION

40 NOVEL AGENTS UNDER INVESTIGATION

46 BONE-TARGETED TREATMENT

POST-TEST 51

EDUCATIONAL ASSESSMENT AND CREDIT FORM 52

Visit ResearchToPractice.com/YIRMM11 Today!

The online version of *Year in Review — Multiple Myeloma 2010-2011* includes:

- Interactive slide modules with faculty commentary reviewing the 22 primary papers and presentations featured in the monograph
- An annotated bibliography listing all secondary papers and presentations
- References with active web links for all papers and presentations taking users to actual abstracts and full-text publications
- Downloadable PowerPoint slides for each of the primary publications
- A convenient, downloadable PDF-based version of the monograph
In early 2008, after the unprecedented data explosion at the 2007 American Society of Hematology (ASH) Annual Meeting where no fewer than 6 Phase III randomized trials in multiple myeloma were presented, our CME group sensed a great need for education in this challenging and unique disease. Within weeks we were swimming in previously uncharted waters as we attempted to conceptualize an educational resource that would expose practicing clinicians to these and other newly emerging trial results while also helping them to understand how this information should be applied to clinical practice. The result of this extensive investment of time and brainpower was not only our first major foray into multiple myeloma but also the creation of an entirely new educational format — Year in Review.

Since that time, 3 things have happened:
1. We have moved forward full force with myeloma education and have provided clinicians with an array of relevant perspectives on the disease.
2. We have successfully expanded Year in Review and have now produced similar editions focused on breast cancer, lung cancer, gastrointestinal cancer and non-Hodgkin lymphoma.
3. Multiple myeloma research has continued to outpace efforts in many other solid tumors and hematologic cancer.

To that end, we once again felt the need to “evaluate, distill and deliver,” and as such we asked 3 clinical investigators and 10 oncologists in community-based practice to sift through the new mountain of information in multiple myeloma to determine what is most relevant to daily patient care. The 22 papers featured as “Primary” publications in this monograph/slide set are considered by our reviewers to be required reading for any physician providing care for patients with this disease. These are accompanied by brief comments from our faculty co-editors and 15 additional “Secondary” papers that are highlighted and annotated.

— Neil Love, MD
DrNeilLove@ResearchToPractice.com
October 21, 2011
FACULTY

William I Bensinger, MD
Professor of Medicine
University of Washington
Member, Fred Hutchinson Cancer Research Center
Seattle, Washington

Jeffrey L Wolf, MD
Professor of Medicine
Director, Myeloma Program
Division of Hematology/Oncology
Blood and Marrow Transplantation
University of California, San Francisco
San Francisco, California

Jeffrey A Zonder, MD
Associate Professor of Medicine and Oncology
Karmanos Cancer Institute
Wayne State University
Detroit, Michigan

COMMUNITY ONCOLOGIST PANEL

Warren S Brenner, MBChB
Center for Hematology/Oncology
Lynn Cancer Institute
Boca Raton, Florida

Charles M Farber, MD, PhD
Section Chief, Hematology Oncology
Department of Medicine
Morristown Memorial Hospital
Carol G Simon Cancer Center
Morristown, New Jersey

Philip T Glynn, MD
Director of Oncology, Noble Hospital
Assistant Clinical Professor
Tufts University School of Medicine
Springfield, Massachusetts

Steven Jeffrey Hager, DO
Cancer Care Associates
Fresno, California

Raymond L Lobins, DO
Clinical Physician
Hematology and Oncology
North Coast Cancer Care
Sandusky, Ohio

Peter Curt Mancusi-Ungaro, MD
Zimmer Cancer Center
New Hanover Regional Medical Center
Wilmington, North Carolina

Jason Melear, MD
Texas Oncology
Austin, Texas

Neil Morganstein, MD
Medical Diagnostic Associates
Summit, New Jersey

Shachar Peles, MD
Hematologist/Oncologist
Palm Beach Cancer Institute
West Palm Beach, Florida

Michael A Schwartz, MD
Attending, Mount Sinai Medical Center
Miami Beach, Florida

14 Dimopoulos MA et al. Lenalidomide and dexamethasone (LEN plus DEX) treatment in relapsed/refractory multiple myeloma (RRMM) patients (pts) and risk of second primary malignancies (SPM): Analysis of MM-009/010. *Proc ASCO* 2011;Abstract 8009.

20 Palumbo A et al. A phase 3 study evaluating the efficacy and safety of lenalidomide combined with melphalan and prednisone in patients ≥ 65 years with newly diagnosed multiple myeloma (NDMM): Continuous use of lenalidomide vs fixed-duration regimens. *Proc ASH* 2010;Abstract 622.

22 Goldschmidt H et al. Bortezomib-based induction therapy followed by autologous stem cell transplantation and maintenance therapy with bortezomib improves outcome in myeloma patients with gain 1q21 and t(4;14) — A subgroup analysis of the HOVON-65/GMMG-HD4 trial. *Proc ASH* 2010;Abstract 305.

MULTIPLE MYELOMA WORKUP AND RISK STRATIFICATION

NOVEL AGENTS UNDER INVESTIGATION

BONE-TARGETED TREATMENT

48 Boyd K et al. Does zoledronic acid (ZOL) reduce skeletal-related events (SREs) and improve progression-free survival (PFS) in patients (pts) with multiple myeloma (MM) with or without bone disease? MRC Myeloma IX study results. *Proc ASCO* 2011;Abstract 8010.

48 Davies FE et al. Bisphosphonate treatment in multiple myeloma: Should they be used until progression? *Proc ASCO* 2011;Abstract 8011.
CLINICAL TRIAL RESULTS WITH APPROVED AGENTS

The first reported study evaluating the role of ASCT versus induction therapy in the era of novel agents. A statistically significant PFS benefit was reported in patients with newly diagnosed multiple myeloma (NDMM) receiving MEL200 compared to MPR (18-month PFS: 78% versus 68%), although toxicities were significantly higher. No significant difference in OS was reported in the current analysis.

VD significantly improved postinduction and post-transplantation CR, near CR and ≥VGPR rates compared to VAD and resulted in a trend for longer PFS in patients with NDMM.

In a retrospective analysis of 72 patients with NDMM, addition of clarithromycin to Rd appeared to significantly improve CR, time to disease progression and PFS outcomes.

VRD induction followed by ASCT and VRD consolidation produced high-quality responses and was well tolerated in patients with NDMM younger than age 65. ORR after ASCT was 94% (including 32% VGPR, 13% CR and 23% stringent CR).

In patients with NDMM receiving bortezomib-based induction treatments, del(13q) alone and del(17p) alone did not adversely influence PFS and OS. Presence of t(4;14) alone did not adversely influence PFS but was associated with a shorter OS. Presence of both del(17p) and t(4;14) was likely to confer a dismal clinical outlook.

An analysis of the prognostic effect of response on time-to-event parameters in the VISTA trial concluded that CR is an important treatment goal and supported prolonged VMP therapy to achieve maximal response.

One-year PFS, ORR and VGPR were superior with RD versus dexamethasone, whereas 1-year OS was similar. Toxicities were more pronounced with RD, including Grade 3 neutropenia and thromboembolic events despite aspirin prophylaxis.
Kumar S et al. Novel three- and four-drug combination regimens of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide, for previously untreated multiple myeloma: Results from the multi-center, randomized, phase 2 EVOLUTION study. Proc ASH 2010;Abstract 621. Continuous weekly C in the VDC regimen was associated with high response rates and rapid responses versus VDR and VDCR. VDCR did not result in a substantial increase in response rate and was associated with a modest increase in the incidence of hematologic toxicities.

Benevolo G et al. The efficacy and safety of bortezomib and dexamethasone as a maintenance therapy in patients with advanced multiple myeloma who are responsive to salvage bortezomib-containing regimens. Cancer 2011;117(9):1884-90. Bortezomib and dexamethasone was effective (1-year ORR: 76%) and well tolerated as maintenance therapy in 49 patients with MM who were responsive to prior bortezomib-based salvage regimens.

Palumbo AP et al. Incidence of second primary malignancy (SPM) in melphalan-prednisone-lenalidomide combination followed by lenalidomide maintenance (MPR-R) in newly diagnosed multiple myeloma patients (pts) age 65 or older. Proc ASCO 2011;Abstract 8007. Among patients with NDMM, an imbalance of AML incidence was observed in patients who received MPR/MPR-R versus MP, but incidence was low (0.7% versus 0%), and SPM risk was similar in other studies.

Rossi AC et al. Incidence of second primary malignancies (SPM) after 6-years follow-up of continuous lenalidomide in first-line treatment of multiple myeloma (MM). Proc ASCO 2011;Abstract 8008. No cases of secondary MDS/AML occurred among 68 patients with NDMM who received BiRD after 4 years.

Madan S et al. Efficacy of retreatment with immunomodulatory drugs (IMiDs) in patients receiving IMiDs for initial therapy of newly diagnosed multiple myeloma. Blood 2011;118(7):1763-5. The efficacy of re-treatment on relapse with lenalidomide was higher than re-treatment with thalidomide among 113 evaluable patients.

Richardson P et al. A phase 1/2 multi-center, randomized, open label dose escalation study to determine the maximum tolerated dose, safety, and efficacy of pomalidomide alone or in combination with low-dose dexamethasone in patients with relapsed and refractory multiple myeloma who have received prior treatment that includes lenalidomide and bortezomib. Proc ASH 2010;Abstract 864. Single-agent pomalidomide achieved clinically significant durable responses with a manageable safety profile in patients with heavily pretreated relapsed or refractory MM. Addition of dexamethasone can reinduce response in selected patients.

Siegel DS et al; Multiple Myeloma Research Consortium (MMRC). PX-171-003-A1, an open-label, single-arm, phase (Ph) II study of carfilzomib (CFZ) in patients (pts) with relapsed and refractory multiple myeloma (R/R MM): Long-term follow-up and subgroup analysis. Proc ASCO 2011;Abstract 8027. In 257 response-evaluable patients with relapsed or refractory MM, single-agent carfilzomib resulted in an ORR of 24% and a median duration of response of 7.4 months. No new, unexpected or cumulative toxicities were observed, and adverse events were clinically manageable.

Henry DH et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 2011;29(9):1125-32. Denosumab was noninferior (trending to superiority) to zoledronic acid in preventing or delaying first on-study SRE. ONJ occurred at similar low rates in both treatment groups.
Lenalidomide, Bortezomib, and Dexamethasone Combination Therapy in Patients with Newly Diagnosed Multiple Myeloma

Introduction

- Bortezomib (V) is approved for the treatment of multiple myeloma (MM).
- Lenalidomide (R) in combination with dexamethasone (D) is approved for the treatment of relapsed MM after ≥1 prior therapy.
- RV ± D is active and well tolerated in relapsed/refractory MM.
- RD and VD are active in front-line MM.
- Current study goals: To determine the maximum tolerated dose of RVD and to assess safety and efficacy in patients with previously untreated MM.

Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All patients (n = 66)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age</td>
<td>58 years</td>
</tr>
<tr>
<td>Male</td>
<td>55%</td>
</tr>
<tr>
<td>Myeloma type</td>
<td></td>
</tr>
<tr>
<td>IgG</td>
<td>68%</td>
</tr>
<tr>
<td>IgA</td>
<td>23%</td>
</tr>
<tr>
<td>Light chain</td>
<td>9%</td>
</tr>
<tr>
<td>ISS Stage II/III at diagnosis</td>
<td>56%</td>
</tr>
</tbody>
</table>

Best Response to Treatment

<table>
<thead>
<tr>
<th>Response</th>
<th>All patients (n = 66)</th>
<th>Phase II population (n = 35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete response (CR)</td>
<td>29%</td>
<td>37%</td>
</tr>
<tr>
<td>Near CR (nCR)</td>
<td>11%</td>
<td>20%</td>
</tr>
<tr>
<td>Very good partial response (VGPR)</td>
<td>27%</td>
<td>17%</td>
</tr>
<tr>
<td>Partial response (PR)</td>
<td>33%</td>
<td>26%</td>
</tr>
<tr>
<td>CR + nCR</td>
<td>39%</td>
<td>57%</td>
</tr>
<tr>
<td>CR + nCR + VGPR</td>
<td>67%</td>
<td>74%</td>
</tr>
<tr>
<td>At least PR</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Per EBMT criteria, all response categories, including VGPR, required a confirmatory assessment at 6 weeks.

Author Conclusions

> RVD is a highly effective regimen for previously untreated MM.
 - May represent the basis of future standard treatment in this setting.
> Phase III studies are evaluating VD with or without R (NCT00522392) and RD with or without V (NCT00644228) to assess the benefit of the 3-drug approach.
> An international prospective study is ongoing to assess this combination with or without autologous stem cell transplant, followed by maintenance.

Select Adverse Events

<table>
<thead>
<tr>
<th>Nonhematologic</th>
<th>All grades</th>
<th>Grade 3 or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensory neuropathy</td>
<td>80%</td>
<td>2%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>64%</td>
<td>3%</td>
</tr>
<tr>
<td>Neuropathic pain</td>
<td>32%</td>
<td>3%</td>
</tr>
<tr>
<td>Hematologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>NR</td>
<td>6%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>NR</td>
<td>9%</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>6%</td>
<td>5%</td>
</tr>
</tbody>
</table>

NR = not reported

Faculty Comments

DR ZONDER: These are the only data we have at the moment on the use of this triplet regimen as front-line therapy. RVD has an unprecedented response rate. These results establish RVD as the backbone to which future regimens must be compared. It’s not a difficult regimen for the average patient, though both of the novel agents can be difficult for individual patients.

Occasionally, neuropathy is rapid in onset and fairly severe with bortezomib. Lenalidomide can cause deep vein thrombosis, so patients should be monitored accordingly. This regimen deserves to be studied further in randomized trials.
Phase III Intergroup Study of Lenalidomide versus Placebo Maintenance Therapy Following Single Autologous Stem Cell Transplant (ASCT) for Multiple Myeloma (MM): CALGB ECOG BMT-CTN 100104

Efficacy

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n = 229)</th>
<th>Lenalidomide (n = 231)</th>
<th>Hazard ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median TTP</td>
<td>30.9 mo</td>
<td>48.0 mo</td>
<td>0.44</td>
<td><0.0001</td>
</tr>
<tr>
<td>OS (events)</td>
<td>39 deaths</td>
<td>23 deaths</td>
<td>0.51</td>
<td>0.018</td>
</tr>
<tr>
<td>Median event-free survival (EFS)</td>
<td>30.9 mo</td>
<td>43.4 mo</td>
<td>0.51</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Median follow-up from transplant: 28 months

Second Cancers: Hematologic

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n = 229)</th>
<th>Lenalidomide (n = 231)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic cancers</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Myelodysplastic syndromes</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Acute myeloid leukemia</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Acute lymphoblastic leukemia</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

CALGB-100104 Study Schema

D-S Stage I-III MM ≤70 years ≥2 cycles of induction Attained ≥stable disease ≤1 year from start of therapy ≥2 x 10^6 CD34 cells/kg

Registration

Restaging Days 90-100

Randomization

Placebo

Mel 200

ASCT

CR

PR

SD

Lenalidomide 10 mg/day ↑↑ (5-15 mg)

Primary objective: Determine the efficacy of lenalidomide in prolonging time to progression (TTP)

Secondary objectives: CR rate post-ASCT, overall survival (OS), feasibility of long-term lenalidomide administration

CR = complete response; PR = partial response; SD = stable disease

Author Conclusions (continued)

> Lenalidomide prolonged TTP and EFS even after stratification by diagnostic β2M level and prior thalidomide or lenalidomide induction therapy (data not shown).

> TTP and EFS were superior in patients receiving lenalidomide as part of induction and post-ASCT maintenance or continued therapy.

> After primary therapy, maintenance or continued therapy studies with lenalidomide and other agents, alone or in combination, may determine optimal strategies for long-term MM disease control.

Second Cancers: Solid Tumors

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Placebo (n = 229)</th>
<th>Lenalidomide (n = 231)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Gynecologic cancer</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CNS cancer</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Thyroid cancer</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Melanoma</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Carcinoid tumor</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Faculty Comments

DR BENSINGER: This trial reported a similar higher incidence of second primary cancers to that seen on the French IFM 2005-02 trial. What’s different and interesting is that the CALGB study reported a 50% reduction in time to disease progression for patients who received lenalidomide maintenance versus placebo. A statistically significant overall survival benefit was also reported.

This is a potential “game changer” even if more second primary cancers occur with lenalidomide maintenance. If you can show an improvement in survival, then it negates the concern about second primary cancers because there were so few. Still, I don’t believe the verdict is in and will await further follow-up on these 2 studies.

Maintenance Treatment with Lenalidomide After Transplantation for Myeloma: Analysis of Secondary Malignancies Within the IFM 2005-02 Trial

Introduction

> The Phase III IFM 2005-02 trial evaluated the efficacy of lenalidomide maintenance after transplantation for patients with multiple myeloma.
 - Maintenance lenalidomide improved progression-free survival (PFS) and was well tolerated.
 - However, several patients developed secondary hematologic or solid cancers.
> Analyses of secondary cancers reported by all IFM centers for patients on IFM 2005-02 were conducted.

IFM 2005-02 Study Schema

Primary endpoint: PFS
Secondary endpoints: CR rate, TTP, OS, feasibility of long-term lenalidomide

Placebo (n = 307)

Lenalidomide (n = 307)

Hazard ratio

\[\text{Hazard ratio} = \frac{\text{Placebo (n = 307)}}{\text{Lenalidomide (n = 307)}} \]

\[p\text{-value} = 10^{-8} \]

Patients <65 years with nonprogressive disease, ≤6 months after ASCT in first line

Randomization: Stratified according to β2M, del13, VGPR

Consolidation:
Lenalidomide alone 25 mg/d po days 1-21 of every 28 days for 2 months

Arm A = Placebo (n = 307) until relapse

Arm B = Lenalidomide (n = 307) 10-15 mg/d until relapse

Progression-Free and Overall Survival

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n = 307)</th>
<th>Lenalidomide (n = 307)</th>
<th>Hazard ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS* (months)</td>
<td>24</td>
<td>41</td>
<td>0.5</td>
<td><10^{-8}</td>
</tr>
<tr>
<td>5-year OS</td>
<td>73%</td>
<td>79%</td>
<td>1.05</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

* PFS benefit was observed across all stratified patient subgroups. Median follow-up: 36 months postrandomization, 46 months postdiagnosis PFS = progression-free survival; OS = overall survival

Second Primary Cancers

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n = 302)</th>
<th>Lenalidomide (n = 306)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic cancers</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>AML/MDS</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ALL</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Solid tumors</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

AML = acute myeloid leukemia; MDS = myelodysplastic syndromes; ALL = acute lymphoblastic leukemia

Author Conclusions

> Maintenance therapy with lenalidomide:
 – Is associated with a low rate of neuropathy and DVT (data not shown)
 – Results in improved PFS compared to placebo: 50% reduction in the risk of disease progression in all stratified subgroups, including response, β2M and FISH
 – Is associated with increased risk of secondary cancers, primarily after 24 months

Author Conclusions (continued)

> Other risk factors for secondary cancers were:
 – Age >55 years
 – Male sex
 – International Staging System Stage III
 – Induction with dexamethasone, cyclophosphamide, etoposide and cisplatin (DCEP) (data not shown)

> Longer follow-up is needed to determine the effect on OS

Faculty Comments

DR BENINGER: This trial demonstrated markedly improved progression-free survival for the patients who received lenalidomide. The higher incidence of second cancers is somewhat concerning. These tended to be hematologic cancers, not largely seen in the group who received placebo, so these results raised the issue of prior melphalan exposure and possible second cancers.

DR ZONDER: I believe the increased risk of secondary cancers observed with lenalidomide is outweighed by the antitymoma benefit that is obtained. The emerging story from the maintenance trials is that longer therapy results in longer disease control. We've known that a risk of secondary cancers exists after anthracycline-containing and alkylator-containing therapy.
Lenalidomide and Dexamethasone (LEN plus DEX) Treatment in Relapsed/Refractory Multiple Myeloma Patients (Pts) and Risk of Secondary Primary Malignancies (SPM): Analysis of MM-009/010

MM-009/010 Phase III Trial Schemas

Analysis of pooled data from patients with relapsed/refractory multiple myeloma (RRMM) treated in 2 Phase III studies (MM-009 and MM-010)

LEN 25 mg/d d1-21
- DEX: 40 mg/d, d1-4, 9-12, 17-20 for first 4 cycles; 40 mg/d d1-4 subsequent cycles
- Continue until disease progression

Placebo (PBO) d1-28
- DEX: 40 mg/d, d1-4, 9-12, 17-20 for first 4 cycles; 40 mg/d d1-4 subsequent cycles

SPM Incidence Rates — Active Treatment Phase (Safety Population)

| Incidence* |
|-----------------|-------------------|
| **Invasive SPM** | **LEN + DEX** (n = 353) | **PBO + DEX** (n = 350) |
| Hematologic | 0.42 | 0 |
| AML/MDS | 0.42 | 0 |
| B-cell malignancies | 0 | 0 |
| Solid tumors | 1.28 | 0.91 |

Noninvasive SPM

| Incidence* |
|-----------------|-------------------|
| **Nonmelanoma skin cancer** | 2.40 | 0.91 |

Total SPM

| Incidence* |
|-----------------|-------------------|
| **LEN + DEX** (n = 353) | 3.98 |
| **PBO + DEX** (n = 350) | 1.38 |

* Incidence rate (IR) reported per 100 person-years (PY)

Invasive SPM Incidence Rates — Treatment and Follow-Up

- **Double-blind phase**
 - PBO + DEX (n = 350): IR = 1.91 (95% CI 0.23-3.66)
 - LEN + DEX (n = 353): IR = 1.71 (95% CI 0.86-3.43)

- **Long-term follow-up only**
 - PBO + DEX (n = 350): IR = 0
 - LEN + DEX (n = 353): IR = 0

Total

- PBO + DEX (n = 350): 817 PY
- LEN + DEX (n = 353): 886 PY

Includes MDS and breast carcinoma in situ but not nonmelanoma skin cancers

With permission from Dimopoulos MA et al. *Proc ASCO* 2011;Abstract 8009.
CLINICAL TRIAL RESULTS WITH APPROVED AGENTS

Author Conclusions

> No difference in incidence rates of invasive SPMs in LEN + DEX arm versus PBO + DEX arm in MM-009/010
> SPM incidence rates were low and similar to the background incidence among persons similarly aged in the general population
> Overall survival was significantly longer for patients who received LEN + DEX
 - Confirmed with long-term follow-up despite ~50% of patients in the PBO + DEX arm crossing over to receive LEN-based therapy
> The overall benefit-risk profile of LEN in RRMM remains strongly positive

Faculty Comments

DR BENSINGER: A signal of increased second primary cancer has been seen with lenalidomide in some of the maintenance trials. This retrospective pooled analysis found that no statistically significant difference was observed in the numbers of second primary tumors in patients with relapsed/refractory myeloma who received lenalidomide/dexamethasone versus those who received dexamethasone and placebo. This adds assurance to the idea that lenalidomide by itself may not increase the incidence of second primary cancer. An issue I would have liked to have seen addressed is whether prior melphalan exposure has any effect on the incidence of second primary cancer. In discussions of maintenance therapy, prior melphalan exposure is brought up as having a possible interaction.
Efficacy and Safety of Once-Weekly Bortezomib in Multiple Myeloma Patients

Introduction

> The Phase III GIMEMA trial comparing VMPT-VT to VMP for elderly patients with newly diagnosed myeloma reported VMPT-VT was superior in response rate (complete response rate: 38% versus 24%) and progression-free survival (56% versus 41%) (J Clin Oncol 2010;28:5101-9).
> Although patients on both arms initially received twice-weekly bortezomib, the protocol was amended to evaluate whether once-weekly bortezomib could decrease toxicity while maintaining efficacy.
> Current analysis objective: To assess the effect of bortezomib schedule change on clinical outcomes and safety, specifically on the incidence and reversibility of bortezomib-induced peripheral neuropathy (PN), for patients enrolled in GIMEMA.

Survival and Best Response Rates

<table>
<thead>
<tr>
<th></th>
<th>Once-weekly bortezomib (n = 369)</th>
<th>Twice-weekly bortezomib (n = 134)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-year progression-free survival</td>
<td>50%</td>
<td>47%</td>
<td>1.0</td>
</tr>
<tr>
<td>3-year overall survival</td>
<td>88%</td>
<td>89%</td>
<td>0.54</td>
</tr>
<tr>
<td>Overall response rate</td>
<td>85%</td>
<td>86%</td>
<td>0.78</td>
</tr>
<tr>
<td>Complete response</td>
<td>30%</td>
<td>35%</td>
<td>0.27</td>
</tr>
<tr>
<td>Very good partial response</td>
<td>25%</td>
<td>19%</td>
<td>0.15</td>
</tr>
<tr>
<td>Partial response</td>
<td>30%</td>
<td>32%</td>
<td>0.66</td>
</tr>
<tr>
<td>Stable disease</td>
<td>13%</td>
<td>9%</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Bortezomib Treatment Exposure and Select Grade 3 or 4 Adverse Events (AEs)

<table>
<thead>
<tr>
<th></th>
<th>Once weekly (n = 369)</th>
<th>Twice weekly (n = 134)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative planned dose</td>
<td>46.8 mg/m²</td>
<td>67.6 mg/m²</td>
<td>—</td>
</tr>
<tr>
<td>Median cumulative dose delivered</td>
<td>39.4 mg/m²</td>
<td>40.1 mg/m²</td>
<td>0.65</td>
</tr>
<tr>
<td>Planned dose delivered</td>
<td>84%</td>
<td>59%</td>
<td>—</td>
</tr>
<tr>
<td>Patients who received ≥90% of planned dose</td>
<td>39%</td>
<td>13%</td>
<td><0.001</td>
</tr>
<tr>
<td>Nonhematologic AE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuropathy</td>
<td>35%</td>
<td>51%</td>
<td>0.003</td>
</tr>
<tr>
<td>Sensory neuropathy</td>
<td>8%</td>
<td>28%</td>
<td><0.001</td>
</tr>
<tr>
<td>Dermatologic events</td>
<td>2%</td>
<td>7%</td>
<td>0.006</td>
</tr>
</tbody>
</table>
Features of Peripheral Neuropathy

<table>
<thead>
<tr>
<th></th>
<th>Once weekly</th>
<th>Twice weekly</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative proportion of patients with PN at 18 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any grade Sensory neuropathy</td>
<td>40%</td>
<td>72%</td>
<td><0.001</td>
</tr>
<tr>
<td>Grade 3 or 4 Sensory neuropathy</td>
<td>9%</td>
<td>36%</td>
<td><0.001</td>
</tr>
<tr>
<td>Bortezomib dose modification caused by PN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose reduction</td>
<td>17%</td>
<td>41%</td>
<td><0.001</td>
</tr>
<tr>
<td>Dose discontinuation</td>
<td>5%</td>
<td>15%</td>
<td><0.001</td>
</tr>
<tr>
<td>Median time to dose reduction</td>
<td>3.8 mo</td>
<td>2.8 mo</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Author Conclusions

> Once-weekly infusion of bortezomib in combination with MPT is a valuable treatment schedule for elderly patients with newly diagnosed disease.

> Initial twice-weekly bortezomib followed by a rapid reduction to a once-weekly schedule may be suggested in selected patients with clinically aggressive disease (ie, those with incipient renal failure or extensive pain) (data not shown).

> The once-weekly schedule significantly reduced the incidence of PN and decreased the rate of discontinuation compared to the twice-weekly schedule, resulting in similar cumulative bortezomib doses in the 2 groups.

> The improvement in the safety profile was not associated with any reduction in the efficacy of the regimen.

Features of Peripheral Neuropathy (continued)

<table>
<thead>
<tr>
<th></th>
<th>Once weekly (n = 77)</th>
<th>Twice weekly (n = 73)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome of Grade 2-4 PN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>34%</td>
<td>40%</td>
<td>0.74</td>
</tr>
<tr>
<td>Improvement</td>
<td>30%</td>
<td>26%</td>
<td>—</td>
</tr>
<tr>
<td>Persistence</td>
<td>36%</td>
<td>34%</td>
<td>—</td>
</tr>
<tr>
<td>Median time to recovery</td>
<td>2.3 mo</td>
<td>3.2 mo</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Faculty Comments

DR ZONDER: This analysis of the VMP versus VMPT-VT study published in Blood focuses on the incidences of peripheral neuropathy (PN) with weekly versus twice-weekly bortezomib administration on the trial. A large reduction was evident in the incidence of Grade 3 and 4 PN in addition to discontinuations related to PN.

Similar data exist from the Mayo Clinic on the use of once-versus twice-weekly bortezomib with similar results — less neuropathy, same efficacy. When I administer bortezomib with MP or with cyclophosphamide/dexamethasone, I use the once-weekly schedule.
Subcutaneous versus Intravenous Administration of Bortezomib in Patients with Relapsed Multiple Myeloma: A Randomised, Phase 3, Non-Inferiority Study

Phase III Trial of Subcutaneous versus Intravenous Bortezomib Administration

- **Eligibility (N = 222)**
 - Relapsed multiple myeloma
 - 1-3 prior lines of therapy
 - No prior bortezomib treatment

- **Subcutaneous (SC)**
 - Bortezomib 1.3 mg/m², d1, 4, 8, 11 (n = 148)

- **Intravenous (IV)**
 - Bortezomib 1.3 mg/m², d1, 4, 8, 11 (n = 74)

- Up to 8 treatment cycles (plus 2 cycles if SD or PR)
 - If <CR after 4 cycles, 20 mg dexamethasone on days 1, 2, 4, 5, 8, 9, 11, 12 added in the next 4 cycles

- SD = stable disease; PR = partial response; CR = complete response

Treatment Exposure

<table>
<thead>
<tr>
<th></th>
<th>Bortezomib SC (n = 147)*</th>
<th>Bortezomib IV (n = 74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median number of cycles (range)</td>
<td>8 (1-10)</td>
<td>8 (1-10)</td>
</tr>
<tr>
<td>Median time on study</td>
<td>22.6 weeks</td>
<td>22.6 weeks</td>
</tr>
<tr>
<td>Median cumulative bortezomib dose</td>
<td>33.76 mg/m²</td>
<td>31.46 mg/m²</td>
</tr>
<tr>
<td>Patients receiving dexamethasone</td>
<td>82 (56%)</td>
<td>39 (53%)</td>
</tr>
</tbody>
</table>

*Three patients had protocol violations for route of administration.

Primary Endpoint: Overall Response Rate After 4 Cycles

<table>
<thead>
<tr>
<th>Clinical variable</th>
<th>Bortezomib SC (n = 145)*</th>
<th>Bortezomib IV (n = 73)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate†</td>
<td>42%</td>
<td>42%</td>
</tr>
<tr>
<td>Complete response</td>
<td>6%</td>
<td>8%</td>
</tr>
<tr>
<td>Partial response</td>
<td>36%</td>
<td>34%</td>
</tr>
<tr>
<td>Very good partial response</td>
<td>4%</td>
<td>3%</td>
</tr>
</tbody>
</table>

* 3 patients in the SC group and 1 patient in the IV group were not evaluable for response.
† p-value of 0.002 meets prespecified criteria for fulfilling noninferiority hypothesis of SC versus IV bortezomib.
SC bortezomib was noninferior in terms of efficacy compared to IV administration.

> The pharmacokinetic and pharmacodynamic profiles of SC and IV bortezomib are similar (data not shown).

> SC administration of bortezomib appears to have an improved safety profile compared to IV administration.

– Significantly lower rates of peripheral neuropathy of all grades were observed in patients administered SC bortezomib.

Author Conclusions

Faculty Comments

DR BENSINGER: This is a nice IFM trial in which patients with relapsed, bortezomib-naïve disease were randomly assigned to receive either subcutaneous (SC) or intravenous (IV) bortezomib. No major differences in the pharmacokinetics of SC versus IV administration were observed. Patient outcomes were also similar — response rates, time to progression and overall survival were identical.

The interesting finding of this study is that SC bortezomib caused less toxicity, specifically less neurotoxicity. A trend toward fewer cytopenias was also observed. The take-home message for me is that SC bortezomib is equally efficacious to IV, and it is associated with less neurotoxicity and is potentially more convenient. I have adopted SC bortezomib in my practice.

Additional Efficacy Outcomes

<table>
<thead>
<tr>
<th>Responding patients (after 8 cycles)</th>
<th>Bortezomib SC (n = 76)</th>
<th>Bortezomib IV (n = 38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median time to first response</td>
<td>1.4 mo</td>
<td>1.4 mo</td>
</tr>
<tr>
<td>Median time to best response</td>
<td>1.6 mo</td>
<td>1.5 mo</td>
</tr>
<tr>
<td>Median duration of response</td>
<td>9.7 mo</td>
<td>8.7 mo</td>
</tr>
<tr>
<td>Intent-to-treat population (n = 148)</td>
<td>10.4 mo</td>
<td>9.4 mo</td>
</tr>
<tr>
<td>Median time to progression</td>
<td>10.2 mo</td>
<td>8.0 mo</td>
</tr>
<tr>
<td>Median progression-free survival</td>
<td>1-year overall survival rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72.6%</td>
<td>76.7%</td>
</tr>
</tbody>
</table>

Select Grade ≥3 Adverse Events

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Bortezomib SC (n = 147)</th>
<th>Bortezomib IV (n = 74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any treatment-related adverse event</td>
<td>39%</td>
<td>55%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>13%</td>
<td>19%</td>
</tr>
<tr>
<td>Anemia</td>
<td>12%</td>
<td>8%</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>Peripheral sensory neuropathy</td>
<td>5%</td>
<td>15%</td>
</tr>
</tbody>
</table>
A Phase III Study Evaluating the Efficacy and Safety of Lenalidomide Combined with Melphalan and Prednisone in Patients ≥ 65 Years with Newly Diagnosed Multiple Myeloma (NDMM): Continuous Use of Lenalidomide vs Fixed-Duration Regimens

Response Rate

All patients achieved very good response rate or better.

With permission from Palumbo A et al. Proc ASH 2010;Abstract 622.

Study Design

Double-blind treatment phase
- Cycles 1-9
 - MPR-R
 - Placebo

Open-label extension phase
- Cycles 10+
 - Continuous lenalidomide treatment
 - 10 mg/day days 1-21
 - Placebo

MPR-R
- Lenalidomide (25 mg/day) +/- dexamethasone

MPR
- Placebo

MP
- Placebo

Stratified by age (<75 vs >75 years) and stage (ISS I/II vs III)

With permission from Palumbo A et al. Proc ASH 2010;Abstract 622.

Progression-Free Survival (PFS)

All Patients (25 Months Follow-Up)

- MPR-R: 31 months
- MPR: 14 months
- MP: 13 months

HR 0.398
\[p < 0.0000001 \]

HR 0.804
\[p = 0.153 \]

With permission from Palumbo A et al. Proc ASH 2010;Abstract 622.
Faculty Comments

DR ZONDER: This study compared MP to MP with lenalidomide (R) and MPR followed by R. These data indicate how important it is to continue lenalidomide therapy. One disappointing aspect about this study was that even though the overall response rates were similar between the 2 MPR arms, that did not translate into a clinically significant improvement in duration of response compared to MP alone. That surprises me.

If it turns out that an exponential increase of secondary cancer occurs beyond 2 or 3 years, then we’ll certainly have to figure out what the optimal duration of therapy is, but right now it would seem that the optimal duration of lenalidomide therapy is until disease progression.

Author Conclusions

> Patients receiving MPR-R for NDMM achieved a higher overall response rate, as well as better-quality and more rapid responses versus MP.

> MPR-R compared to fixed-duration regimens of MP and MPR resulted in an unprecedented reduction in the risk of progression with a manageable safety profile and similar rates of progressive disease.

- Median PFS: 31 months ($p < 0.0000001$)
- Greatest benefit reported in patients age 65–75

> Continuous lenalidomide therapy with MPR-R may be superior to regimens of limited duration by providing sustained disease control in transplant-ineligible patients with NDMM.

Progression-Free Survival (PFS) Patients Age 65-75 Years

With permission from Palumbo A et al. *Proc ASH* 2010;Abstract 622.

Landmark Analysis — PFS

With permission from Palumbo A et al. *Proc ASH* 2010;Abstract 622.
Bortezomib-Based Induction Therapy Followed by Autologous Stem Cell Transplantation and Maintenance Therapy with Bortezomib Improves Outcome in Myeloma Patients with Gain 1q21 and t(4;14) — A Subgroup Analysis of the HOVON-65/GMMG-HD4 Trial

Goldschmidt H et al. Proc ASH 2010;Abstract 305.

HOVON-65/GMMG-HD4 Trial: Background and Methods

> Chromosomal aberrations are important prognostic parameters in multiple myeloma.
> This analysis evaluated the association of FISH results and outcome of a subgroup of patients within the HOVON-65/GMMG-HD4 trial.
> Arm A (n = 131): Vincristine/doxorubicin/dexamethasone (VAD) x 3 with autologous stem cell transplant (ASCT) → thalidomide ≤2 years
> Arm B (n = 127): Bortezomib/doxorubicin/dexamethasone (PAD) x 3 with ASCT → bortezomib ≤2 years
> All patients received: Hematopoietic stem cell mobilization with CAD and G-CSF and 1-2 cycles of high-dose melphalan with ASCT → maintenance therapy

Goldschmidt H et al. Proc ASH 2010;Abstract 305.

Prognostic Effect of Chromosomal Abnormalities on Outcome

<table>
<thead>
<tr>
<th>Chromosomal Abnormality</th>
<th>Present</th>
<th>Absent</th>
<th>P-value</th>
<th>Present</th>
<th>Absent</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>del(8p21)</td>
<td>34%</td>
<td>54%</td>
<td>0.005</td>
<td>67%</td>
<td>83%</td>
<td>NS</td>
</tr>
<tr>
<td>del(13q14)</td>
<td>39%</td>
<td>58%</td>
<td>0.010</td>
<td>73%</td>
<td>84%</td>
<td>0.006</td>
</tr>
<tr>
<td>del(17p13)</td>
<td>22%</td>
<td>51%</td>
<td><0.001</td>
<td>36%</td>
<td>83%</td>
<td><0.001</td>
</tr>
<tr>
<td>+1q21</td>
<td>22%</td>
<td>56%</td>
<td>0.002</td>
<td>71%</td>
<td>84%</td>
<td>0.010</td>
</tr>
<tr>
<td>t(4;14)</td>
<td>31%</td>
<td>51%</td>
<td>0.020</td>
<td>55%</td>
<td>83%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

PFS = progression-free survival; OS = overall survival; NS = not significant

Mantle cell lymphoma

Comparison between Both Study Arms Deletion 17p13

With permission from Goldschmidt H et al. Proc ASH 2010;Abstract 305.
Chromosomal aberrations with prognostic effect on PFS and OS within the GMMG-HD4 trial were as follows:

- del(13q), del(17p), t(4;14) and +1q

Deletion of chromosome 13q as exclusive chromosomal aberration without the presence of del(17p) and t(4;14) indicates no effect on outcome.

These data indicate that ASCT and maintenance therapy with bortezomib significantly improve outcome in patients with myeloma with gain 1q and t(4;14).

In contrast, ASCT and maintenance therapy with bortezomib do not modify the outcome of patients with del(17p), for whom a standard therapy has yet to be identified.

Author Conclusions

> Chromosomal aberrations with prognostic effect on PFS and OS within the GMMG-HD4 trial were as follows:
> - del(13q), del(17p), t(4;14) and +1q
> - Deletion of chromosome 13q as exclusive chromosomal aberration without the presence of del(17p) and t(4;14) indicates no effect on outcome.
> - These data indicate that ASCT and maintenance therapy with bortezomib significantly improve outcome in patients with myeloma with gain 1q and t(4;14).
> - In contrast, ASCT and maintenance therapy with bortezomib do not modify the outcome of patients with del(17p), for whom a standard therapy has yet to be identified.

Faculty Comments

DR WOLF: This report focuses on a subgroup analysis of the HOVON study and on the ability of bortezomib to overcome adverse prognostic features. Patients with t(4;14) who received VAD have poor prognoses, with a median progression-free survival time half as long as those without the translocation, yet no such negative effect was observed in patients on the PAD arm. PAD also resulted in improved 3-year overall survival for patients with t(4;14). If you compare VAD to PAD, an advantage was evident, but it was much smaller in those without the 4;14 translocation. The message here confirms that bortezomib overcomes the adverse prognostic features of the 4;14 translocation. A new observation is that patients with overexpression of the 1q21 gene have a poor prognosis.
Bortezomib with Thalidomide plus Dexamethasone Compared with Thalidomide plus Dexamethasone as Induction Therapy Before, and Consolidation Therapy After, Double Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: A Randomized Phase 3 Study

<table>
<thead>
<tr>
<th></th>
<th>VTD (n = 236)</th>
<th>TD (n = 238)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete response (CR)</td>
<td>19%</td>
<td>5%</td>
<td><0.0001</td>
</tr>
<tr>
<td>CR + near CR (nCR)</td>
<td>31%</td>
<td>11%</td>
<td><0.0001</td>
</tr>
<tr>
<td>≥Very good partial response</td>
<td>62%</td>
<td>28%</td>
<td><0.0001</td>
</tr>
<tr>
<td>≥Partial response</td>
<td>93%</td>
<td>79%</td>
<td>0.0011</td>
</tr>
<tr>
<td>Minimal response or stable disease</td>
<td>7%</td>
<td>16%</td>
<td>0.0011</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>0%</td>
<td>5%</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Response After Second ASCT

<table>
<thead>
<tr>
<th></th>
<th>VTD (n = 236)</th>
<th>TD (n = 238)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>42%</td>
<td>30%</td>
<td>0.0105</td>
</tr>
<tr>
<td>CR + nCR</td>
<td>55%</td>
<td>41%</td>
<td>0.0024</td>
</tr>
<tr>
<td>≥Very good partial response</td>
<td>82%</td>
<td>64%</td>
<td><0.0001</td>
</tr>
<tr>
<td>≥Partial response</td>
<td>93%</td>
<td>84%</td>
<td><0.0011</td>
</tr>
<tr>
<td>Minimal response or stable disease</td>
<td>6%</td>
<td>8%</td>
<td>0.38</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>1%</td>
<td>8%</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Progression-Free Survival (PFS) in Patients with Poor Prognoses

<table>
<thead>
<tr>
<th>Event/Number of Patients</th>
<th>VTD</th>
<th>TD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated 3-year PFS</td>
<td>68%</td>
<td>56%</td>
<td>0.0057</td>
</tr>
<tr>
<td>Presence of del(13q)</td>
<td>29/103</td>
<td>46/103</td>
<td>0.0039</td>
</tr>
<tr>
<td>LDH >190 U/L</td>
<td>43/182</td>
<td>72/200</td>
<td>0.0088</td>
</tr>
<tr>
<td>Age >60 years</td>
<td>23/92</td>
<td>41/95</td>
<td>0.0150</td>
</tr>
<tr>
<td>Presence of t(4;14) ± del(17p)</td>
<td>20/53</td>
<td>32/57</td>
<td>0.0174</td>
</tr>
<tr>
<td>Bone marrow plasma cells >50%</td>
<td>30/116</td>
<td>41/111</td>
<td>0.0301</td>
</tr>
<tr>
<td>ISS disease Stage II–III</td>
<td>42/129</td>
<td>57/131</td>
<td>0.0482</td>
</tr>
</tbody>
</table>

LDH = lactate dehydrogenase

Select Grade 3 or 4 Adverse Events (AEs) During Induction Therapy

<table>
<thead>
<tr>
<th>AEs</th>
<th>VTD (n = 236)</th>
<th>TD (n = 238)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any serious AE</td>
<td>13%</td>
<td>13%</td>
<td>0.86</td>
</tr>
<tr>
<td>Any Grade 3 or 4 AE</td>
<td>56%</td>
<td>33%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Any Grade 3 or 4 non-hematologic AE</td>
<td>51%</td>
<td>31%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Peripheral neuropathy (PN)*</td>
<td>10%</td>
<td>2%</td>
<td>0.0004</td>
</tr>
<tr>
<td>Skin rash</td>
<td>10%</td>
<td>2%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Gastrointestinal events</td>
<td>2%</td>
<td><1%</td>
<td>0.0982</td>
</tr>
</tbody>
</table>

* Resolution or improvement of severe PN was recorded in 18 of 23 patients receiving VTD and in 3 of 5 patients receiving TD.

Author Conclusions

> In this patient population induction and consolidation therapy with VTD significantly improved clinical outcomes compared to TD therapy in those receiving double ASCT.

- CR/nCR rate: 31% (VTD) versus 11% (TD); p-value < 0.0001

> VTD combined with double ASCT had a positive effect on PFS in patients with poor prognoses, including those with adverse cytogenetic abnormalities who do not benefit from standard ASCT.

> VTD represents a new standard to maximize the degree and speed of tumor reduction in patients with myeloma who are eligible for transplant.

Faculty Comments

DR ZONDER: This up-front study randomly assigned patients with multiple myeloma eligible for transplant to VTD or TD. The study demonstrated that VTD was superior overall to TD. The percent of patients who had a complete response (CR) or near CR (nCR) after induction was 3 times higher on the VTD arm, and the rate of partial response or better was 93% versus 79%. That benefit seems to carry through transplant. Outside the setting of a study, it appears that VTD is superior to TD, but even with that combination, you can improve responses in patients who aren’t in a CR or nCR by sending them for transplant.
Stem Cell Mobilization in Patients with Newly Diagnosed Multiple Myeloma After Lenalidomide Induction Therapy

Cavallo F et al.

Background

- The mobilization of stem cells may be adversely affected by cytopenias associated with the use of lenalidomide in patients with multiple myeloma (MM).
- Median yield of stem cells collected after lenalidomide/dexamethasone (Rd) induction is lower in patients mobilized with granulocyte-colony stimulating factor (G-CSF) alone compared to patients mobilized with cyclophosphamide and G-CSF (*Leukemia* 2007;21:2035).
- The hematologic toxicity observed during treatment with lenalidomide has raised concern that its use may negatively affect the ability to mobilize stem cells (*Leukemia* 2007;21:2035).

Methods and Objective

- Rd induction therapy was administered in a multicenter, prospective study (RV-MM-PI209) for patients with newly diagnosed MM.
- Patients were then mobilized and randomly assigned to receive oral MPR (melphalan/prednisone/lenalidomide) or high-dose melphalan and tandem autologous stem cell transplant (ASCT).
- The objective of this study was to investigate the influence of 4 cycles of Rd induction therapy on stem cell collection.

Stem Cell Harvest — All Evaluable Patients

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median duration of leukapheresis</td>
<td>3 days</td>
</tr>
<tr>
<td>Median cells collected after 1 mobilization cycle (x 10^6 CD34+/kg)</td>
<td>7.8</td>
</tr>
<tr>
<td>Median cells collected after 2 mobilization cycles (x 10^6 CD34+/kg)</td>
<td>8.7</td>
</tr>
<tr>
<td>Patients with yields < 2 x 10^6 CD34+/kg at 1st mobilization*</td>
<td>15%</td>
</tr>
<tr>
<td>Patients with yields < 4 x 10^6 CD34+/kg at 1st mobilization</td>
<td>21%</td>
</tr>
<tr>
<td>Patients with yields < 2 x 10^6 CD34+/kg at 2nd mobilization</td>
<td>8%</td>
</tr>
<tr>
<td>Patients with yields < 4 x 10^6 CD34+/kg at 2nd mobilization</td>
<td>9%</td>
</tr>
</tbody>
</table>

C Inadequate yield defined as <4x10^6 CD34+/kg
CLINICAL TRIAL RESULTS WITH APPROVED AGENTS

Engraftment at First ASCT

<table>
<thead>
<tr>
<th></th>
<th>n = 143*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median x 10⁶ CD34+ /kg cells infused</td>
<td>4.30</td>
</tr>
<tr>
<td>Days until absolute neutrophil count >500 x 10⁹/L</td>
<td>8</td>
</tr>
<tr>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>Days until platelet count >25 x 10⁹/L</td>
<td>7.5</td>
</tr>
<tr>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>Red blood cell transfusion</td>
<td>36%</td>
</tr>
<tr>
<td>Platelet transfusion</td>
<td>59%</td>
</tr>
</tbody>
</table>

* Patients in the evaluable population who received Rd induction therapy

Author Conclusions

> Lenalidomide as part of an induction regimen did not adversely affect stem cell mobilization.

> The quantity of stem cells collected was adequate to perform tandem ASCT in 91% of patients with rapid and successful engraftment in all patients.

> This is the largest prospective study reporting on stem cell collection after Rd induction before ASCT in patients with newly diagnosed MM.

Faculty Comments

DR ZONDER: Concerns have arisen in the literature about the impact of lenalidomide on stem cell collection. This study evaluated 346 patients with newly diagnosed multiple myeloma who received 4 cycles of lenalidomide/dexamethasone (Rd) followed by stem cell collection with cyclophosphamide and G-CSF. The authors reported that 79% of patients achieved sufficient yield with first mobilization. Upon second mobilization, 91% of patients achieved adequate yield.

The bottom line is we now have data that indicate that lenalidomide exposure does not have an effect on ability to mobilize stem cells and that the majority of patients are able to be adequately mobilized with 1 or 2 collection attempts.

Bortezomib, Melphalan, and Prednisone versus Bortezomib, Thalidomide, and Prednisone as Induction Therapy Followed by Maintenance Treatment with Bortezomib and Thalidomide versus Bortezomib and Prednisone in Elderly Patients with Untreated Multiple Myeloma: A Randomized Trial

Introduction

- Bortezomib, melphalan and prednisone (VMP) is tolerable and effective in elderly patients with multiple myeloma (MM).
 - 89% ≥overall response rate (ORR); 32% complete response (CR) (*Blood* 2006;108:2165)
 - Median progression-free survival = 27.2 months (*Haematologica* 2008;93:560)
 - 17% Grade 3 or 4 peripheral neuropathy
- Current study objectives
 - Induction: To achieve a CR rate of ≥20% and to determine whether melphalan or thalidomide was better in combination with bortezomib
 - Maintenance: To increase CR rate by ≥15% (from 20% after induction to 35%) with a favorable toxicity profile

VMP vs VTP Followed by VT vs VP for Untreated MM in Patients >65 Years

Bortezomib (V): Induction phase, 1.3 mg/m² twice weekly during a 6-week first cycle, then weekly during subsequent cycles; maintenance phase, 1.3 mg/m² twice weekly days 1, 4, 8 and 11 every 3 months

Response Rate During Induction and Maintenance Therapy

<table>
<thead>
<tr>
<th>Therapy</th>
<th>VMP (n = 130)</th>
<th>VTP (n = 130)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORR (≥PR)</td>
<td>80%</td>
<td>81%</td>
<td>0.9</td>
</tr>
<tr>
<td>CR</td>
<td>20%</td>
<td>28%</td>
<td>0.2</td>
</tr>
<tr>
<td>Near CR</td>
<td>12%</td>
<td>8%</td>
<td>0.2</td>
</tr>
<tr>
<td>PR</td>
<td>48%</td>
<td>45%</td>
<td>0.7</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>39%</td>
<td>44%</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS = not significant

CLINICAL TRIAL RESULTS WITH APPROVED AGENTS

Response in Hyperdiploid (HD) versus Nonhyperdiploid (NHD) Patients

<table>
<thead>
<tr>
<th>Response</th>
<th>NHD (n = 92)</th>
<th>HD* (n = 132)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>77%</td>
<td>83%</td>
<td>0.4</td>
</tr>
<tr>
<td>VMP group</td>
<td>82%</td>
<td>81%</td>
<td>0.7</td>
</tr>
<tr>
<td>VTP group</td>
<td>73%</td>
<td>86%</td>
<td>0.4</td>
</tr>
<tr>
<td>3-year overall survival (95% CI)</td>
<td>63%</td>
<td>77%</td>
<td>0.04</td>
</tr>
<tr>
<td>VMP group</td>
<td>72%</td>
<td>76%</td>
<td>0.5</td>
</tr>
<tr>
<td>VTP group</td>
<td>53%</td>
<td>77%</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* HD patient group: DNA index >1.0 with assessments performed by flow cytometry

Response in Hyperdiploid (HD) versus Nonhyperdiploid (NHD) Patients

Author Conclusions

> Reduced-intensity induction with a bortezomib-based regimen, followed by maintenance, is a safe and effective treatment for elderly patients with MM.
 - ORR, 80% (VMP) versus 81% (VTP); p-value = 0.9
> The rates of Grade 3 or worse peripheral neuropathy and gastrointestinal symptoms were similar compared to a conventional schedule of VMP.
> Maintenance therapy increased CR rates (VP: 39% versus VT: 44%).
> In contrast to VMP, VTP induction was associated with a higher occurrence of serious AEs.

Select Adverse Events (AEs) (Grade 3 or Worse)

<table>
<thead>
<tr>
<th>Induction therapy</th>
<th>VMP (n = 130)</th>
<th>VTP (n = 130)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia</td>
<td>27%</td>
<td>12%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>39%</td>
<td>22%</td>
<td>0.008</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>7%</td>
<td>9%</td>
<td>0.6</td>
</tr>
<tr>
<td>Related serious AEs</td>
<td>15%</td>
<td>31%</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance therapy</th>
<th>VP (n = 87)</th>
<th>VT (n = 91)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia (Grade 1 or 2)</td>
<td>1%</td>
<td>1%</td>
<td>0.8</td>
</tr>
<tr>
<td>Gastrointestinal toxicity</td>
<td>1%</td>
<td>4%</td>
<td>0.6</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>2%</td>
<td>7%</td>
<td>0.6</td>
</tr>
<tr>
<td>Discontinuation due to AEs</td>
<td>5%</td>
<td>8%</td>
<td>0.6</td>
</tr>
</tbody>
</table>

* HD patient group: DNA index >1.0 with assessments performed by flow cytometry

Facility Comments

DR ZONDER: This study investigated the benefits and importance of: (1) sequenced drugs such as melphalan, (2) simultaneous treatment with bortezomib and thalidomide and (3) the inclusion of maintenance therapy in the treatment regimen. The study demonstrated that the 2 induction treatment regimens induced a higher response rate than that previously observed with TD in the same patient population. Therefore, either VMP or VTP would be considered as reasonable alternatives to TD therapy. However, VTP produced more toxic effects than VMP.

DR WOLF: This is an important study because of the elderly population evaluated. My take-home message from this study is that continued therapy with bortezomib is effective and a reasonable consideration.
Bortezomib, Melphalan, Prednisone and Thalidomide Followed by Maintenance with Bortezomib and Thalidomide (VMPT-VT) for Initial Treatment of Elderly Multiple Myeloma Patients: Updated Follow-Up and Impact of Prognostic Factors

Study Schema

Best Response Rates

<table>
<thead>
<tr>
<th></th>
<th>VMP (N = 253)</th>
<th>VMPT-VT (N = 250)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>24%</td>
<td>42%</td>
<td><0.0001</td>
</tr>
<tr>
<td>≥VGPR</td>
<td>50%</td>
<td>64%</td>
<td>0.001</td>
</tr>
<tr>
<td>≥PR</td>
<td>81%</td>
<td>90%</td>
<td>0.007</td>
</tr>
</tbody>
</table>

With permission from Palumbo A et al. Proc ASH 2010;Abstract 620.

Results: Progression-Free Survival and Time to Next Therapy

Statistically significant improvements reported with VMPT → VT versus VMP for the treatment of newly diagnosed multiple myeloma.

- CR rate: 42% versus 24% (p < 0.0001)
- Median PFS: 37 months versus 27 months (p < 0.0001)

VMPT → VT prolonged PFS with an unprecedented 3-year PFS of 51% in elderly patients.

Higher dose-intensity regimens seemed to be less effective in frail patients (≥75 years) (data not shown).

Maintenance therapy with VT further improved PFS with a good safety profile.

Author Conclusions

DR ZONDER: The take-home messages in this study are (1) VMPT had a statistically significant and clinically somewhat significant increase in the overall response rate and (2) I believe the most impressive difference between these arms was the percent of deep responses and the PFS. The PFS benefit has everything to do with maintenance therapy.

DR WOLF: Probably the most important aspect of this study wasn’t planned initially. Some patients on this trial were switched from twice-weekly to once-weekly bortezomib. The important observation here is that in both groups, the once-weekly infusion reduced the incidence of severe peripheral neuropathy from 4% to 2%, which is huge.

Faculty Comments

Efficacy and Toxicity by Bortezomib Schedule

<table>
<thead>
<tr>
<th></th>
<th>VMP twice weekly* (in VISTA)</th>
<th>VMP twice weekly</th>
<th>VMP once weekly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete response [CR]</td>
<td>30%</td>
<td>27%</td>
<td>23%</td>
</tr>
<tr>
<td>3-year progression-free survival (PFS)</td>
<td>NA</td>
<td>32%</td>
<td>35%</td>
</tr>
<tr>
<td>Sensory peripheral neuropathy [PN]</td>
<td>Any grade 44%</td>
<td>43%</td>
<td>21%</td>
</tr>
<tr>
<td></td>
<td>Grade 3 or 4 13%</td>
<td>14%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>PN discontinuation</td>
<td>NA</td>
<td>16%</td>
</tr>
</tbody>
</table>

NA = not applicable
Phase 3b UPFRONT Study: Safety and Efficacy of Weekly Bortezomib Maintenance Therapy After Bortezomib-Based Induction Regimens in Elderly, Newly Diagnosed Multiple Myeloma Patients

UPFRONT Study Schema

Induction: 21-day cycles
- **Cycles 1-4**
 - **VD**
 - V: 1.3 mg/m², days 1, 4, 8, 11
 - D: 20 mg, days 1, 4, 5, 8, 11, 12
 - **VTD**
 - V: 1.3 mg/m², days 1, 4, 8, 11
 - T: 100 mg, days 1-21
 - D: 20 mg, days 1, 4, 5, 8, 9, 11, 12
 - **VMP**
 - V: 1.3 mg/m², days 1, 4, 8, 11
 - M: 9 mg/m², days 1, 2, 3, 4 of every other cycle
 - P: 60 mg/m², days 1, 2, 3, 4 of every other cycle

Maintenance: 35-day cycles
- **Cycles 9-13**
 - **VD**
 - V: 1.3 mg/m², days 1, 4, 8, 11
 - D: 20 mg, days 1, 2, 4, 5

Randomize 1:1:1
- **V = bortezomib; D = dexamethasone; T = thalidomide; M = melphalan; P = prednisone**

Efficacy: Survival and Response Rates

<table>
<thead>
<tr>
<th></th>
<th>VD (n = 167)</th>
<th>VTD (n = 168)</th>
<th>VMP (n = 167)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>13.8 mo</td>
<td>18.4 mo</td>
<td>17.3 mo</td>
</tr>
</tbody>
</table>

Response rates after induction therapy (I) and after V maintenance (M)

<table>
<thead>
<tr>
<th></th>
<th>VD</th>
<th>VTD</th>
<th>VMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>I</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>68%</td>
<td>71%</td>
<td>78%</td>
</tr>
<tr>
<td>CR + nCR</td>
<td>24%</td>
<td>31%</td>
<td>36%</td>
</tr>
<tr>
<td>≥VGPR</td>
<td>36%</td>
<td>39%</td>
<td>44%</td>
</tr>
</tbody>
</table>

PFS = progression-free survival; ORR = overall response rate; CR = complete response; nCR = near CR; VGPR = very good partial response

Treatment Emergent Grade ≥3 Adverse Events (AEs)

<table>
<thead>
<tr>
<th></th>
<th>VD (n = 99)</th>
<th>VTD (n = 93)</th>
<th>VMP (n = 99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>M</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td>At least 1 Grade ≥3 AE</td>
<td>70%</td>
<td>7%</td>
<td>84%</td>
</tr>
<tr>
<td>PN</td>
<td>15%</td>
<td>5%</td>
<td>26%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>8%</td>
<td>4%</td>
<td>15%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>1%</td>
<td>0%</td>
<td>3%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>8%</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>11%</td>
<td>0%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Author Conclusions

- All 3 regimens were active in the treatment of elderly patients with newly diagnosed multiple myeloma.
 - Grade ≥3 AEs, serious AEs, PN and study discontinuations due to AEs were highest on the VTD arm.
- Single-agent bortezomib maintenance therapy after induction resulted in some increase of ≥VGPR rates in all 3 arms and was well tolerated.
 - Compared to postinduction rates, the rates of all-grade and Grade ≥3 PN did not increase substantially in any of the 3 treatment arms.
- PFS appeared similar among the treatment arms in the intent-to-treat population.

Peripheral Neuropathy

<table>
<thead>
<tr>
<th></th>
<th>VD (n = 99)</th>
<th>VTD (n = 93)</th>
<th>VMP (n = 99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>M</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td>Any grade PN resulting in discontinuation of all study drugs</td>
<td>7%</td>
<td>4%</td>
<td>18%</td>
</tr>
<tr>
<td>Grade ≥3 PN resulting in discontinuation of all study drugs</td>
<td>4%</td>
<td>4%</td>
<td>13%</td>
</tr>
<tr>
<td>Median time to PN</td>
<td>77 days</td>
<td>41 days</td>
<td>63 days</td>
</tr>
</tbody>
</table>

Faculty Comments

DR ZONDER: This study evaluated VD versus VTP versus VMP followed by 25 weeks of weekly maintenance bortezomib in all arms. All 3 bortezomib-based regimens resulted in substantial efficacy after 8 cycles. Overall response rates were 68% (VD), 78% (VTP) and 71% (VMP). Response rates were comparable (increased 1% to 3%) after bortezomib maintenance, but I don’t believe that’s all that surprising.

DR WOLF: The take-home message in this study is that 3-drug regimens are marginally better than 2-drug regimens, and you can continue bortezomib weekly. Response rates improved after bortezomib maintenance, with no increase in the incidence of peripheral neuropathy.
The Efficacy and Safety of Lenalidomide and Dexamethasone in Relapsed and/or Refractory Multiple Myeloma Patients with Impaired Renal Function

Introduction

> 20% of patients with multiple myeloma (MM) present with renal failure1, which is the second most common cause of death in patients with MM2 (1 Leukemia 2008;22:1485, 2 Arch Pathol Lab Med 2004;128:875).
> Recovery of renal function can occur through therapeutic control of MM and is associated with an improvement in outcome (Arch Intern Med 1998;158:1889).
> Lenalidomide (LEN) with dexamethasone (DEX) is an effective therapy for MM associated with an overall response rate of 60% (N Engl J Med 2007;357:2133).
> Current study objective:
 - Assess the effect of renal dysfunction on safety and efficacy outcomes of patients treated with lenalidomide

Study Methods

> Retrospective analysis of 350 patients randomly assigned to receive LEN with DEX in MM-009 and MM-010 Phase III trials
> Renal function was assessed throughout the study by measurement of serum creatinine levels and calculation of creatinine clearance (CLcr).
> CLcr values were used to subdivide patients into renal impairment (RI) subgroups
 - Mild or no RI = CLcr ≥60 mL/minute
 - Moderate RI = CLcr ≥30 mL/minute and <60 mL/minute
 - Severe RI = CLcr <30 mL/minute

Efficacy Outcomes According to Renal Function

<table>
<thead>
<tr>
<th>Clinical parameter</th>
<th>Mild or no RI (n = 243)</th>
<th>Moderate RI (n = 82)</th>
<th>Severe RI (n = 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response</td>
<td>64%</td>
<td>56%</td>
<td>50%</td>
</tr>
<tr>
<td>Complete response</td>
<td>16%</td>
<td>16%</td>
<td>6%</td>
</tr>
<tr>
<td>Very good partial response</td>
<td>19%</td>
<td>11%</td>
<td>31%</td>
</tr>
<tr>
<td>Partial response</td>
<td>30%</td>
<td>29%</td>
<td>13%</td>
</tr>
<tr>
<td>Median time to progression</td>
<td>12.0 mo</td>
<td>11.1 mo</td>
<td>7.8 mo</td>
</tr>
<tr>
<td>Median progression-free survival</td>
<td>11.1 mo</td>
<td>9.5 mo</td>
<td>7.8 mo</td>
</tr>
<tr>
<td>Median overall survival</td>
<td>38.9 mo</td>
<td>29.0 mo*</td>
<td>18.4 mo*</td>
</tr>
</tbody>
</table>

* Includes “response was not evaluable” patients and those without response assessment; p = 0.006 versus mild or no RI

> With careful monitoring of the CLcr level and adverse events and undertaking the appropriate dose adjustments, LEN with DEX is an effective and well-tolerated treatment option for patients with MM and RI.

> Patients with moderate to severe RI:
 - Had increased incidence of thrombocytopenia (data not shown)
 - Required more frequent LEN dose reduction/interruption
 - Had shorter overall survival

> Formal studies confirming the efficacy of LEN in patients with renal failure are warranted and ongoing.

> For future studies of LEN, it is important to convert serum creatinine to CLcr and to use CLcr for recommended LEN dosage adjustments for patients with RI.

Dosage Information According to Renal Function

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mild or no RI (n = 243)</th>
<th>Moderate RI (n = 82)</th>
<th>Severe RI (n = 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median LEN dose</td>
<td>25 mg/d</td>
<td>25 mg/d</td>
<td>15 mg/d*</td>
</tr>
<tr>
<td>Dose reduction/interruption due to adverse event</td>
<td>22%</td>
<td>40%*</td>
<td>38%*</td>
</tr>
<tr>
<td>Median time to LEN dose reduction</td>
<td>99 days</td>
<td>85 days</td>
<td>78 days</td>
</tr>
<tr>
<td>Discontinuation due to adverse event</td>
<td>12%</td>
<td>18%</td>
<td>38%*</td>
</tr>
</tbody>
</table>

* p < 0.05 versus patients with mild or no RI

Recommendations for LEN Dosing in Patients with MM and Renal Impairment*

<table>
<thead>
<tr>
<th>Category</th>
<th>Renal function †</th>
<th>LEN dosing in MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate RI</td>
<td>CLcr ≥30 mL/min to <60 mL/min</td>
<td>10 mg every 24 h</td>
</tr>
<tr>
<td>Severe RI</td>
<td>CLcr <30 mL/min (not requiring dialysis)</td>
<td>15 mg every 48 h</td>
</tr>
<tr>
<td>End-stage renal disease</td>
<td>CLcr <30 mL/min (requiring dialysis)</td>
<td>5 mg once daily; on dialysis days, dose administered after dialysis</td>
</tr>
</tbody>
</table>

* Based on LEN prescribing information
† Cockcroft-Gault CLcr

Author Conclusions

Faculty Comments

DR BENINGER: Compared to patients with mild or no renal dysfunction, patients with moderate to severe renal dysfunction did not live as long and their disease progressed faster. With the proper dose adjustments, this study demonstrated that lenalidomide was safe and effective for patients with renal impairment. I had a patient with multiple myeloma who developed rapidly progressive renal failure. We were able to improve his renal function and bring him back into remission using low-dose lenalidomide at 5 mg, followed by 10 mg.

DR WOLF: The message here is that you can use lenalidomide in this setting. If I opt to do so, I start at a low dose. If the patient’s counts are fine, I’ll raise the dose. You have to be careful and you have to adjust your dose.
Introduction

> In everyday practice, confusion remains regarding the use of standard laboratory tests that evaluate serum and urine monoclonal proteins.

> During the past decade, newer imaging techniques, such as MRI and PET/CT, have been increasingly used in the assessment of patients with multiple myeloma (MM).

> This report from the International Myeloma Working Group Consensus Panel contains recommendations for the minimum diagnostic and prognostic tests, the follow-up investigation after therapy and the tests to be performed at relapse for patients with MM.

Diagnostic Criteria for Plasma Cell Disorders

> **Monoclonal gammopathy of undetermined significance***:
 - Serum monoclonal protein <3 g/dL
 - Clonal bone marrow plasma cells <10%
 - Absence of end-organ damage such as hypercalcemia, renal insufficiency, anemia and bone lesions (CRAB) that can be attributed to the plasma cell proliferative disorder

> **Smoldering MM (asymptomatic MM)**:
 - Serum monoclonal protein (IgG or IgA) ≥3 g/dL and/or clonal bone marrow plasma cells ≥10%
 - Absence of end-organ damage such as lytic bone lesions, anemia, hypercalcemia or renal failure that can be attributed to a plasma cell proliferative disorder

* All/both criteria must be met

Symptomatic MM*:
 - Clonal bone marrow plasma cells ≥10%
 - Presence of serum and/or urinary monoclonal protein (except in patients with nonsecretory MM*)
 - Evidence of end-organ damage that can be attributed to the underlying plasma cell proliferative disorder, specifically:
 - Hypercalcemia
 - Renal insufficiency
 - Anemia
 - Bone lesions

* ≥10% clonal plasma cells are required for the diagnosis of nonsecretory myeloma

* All 3 criteria must be met except as noted above
The majority of the workup recommended at diagnosis is also pertinent at relapse. A bone marrow aspirate and/or biopsy should be performed if clinically indicated (ie, suspicion of hyposecretory MM progression or when MDS is considered [presence of cytopenias]). For patients with normal or no cytogenetic or FISH analyses at baseline, these tests should be performed at relapse. A skeletal survey may be indicated to detect possible lesions at risk for fracture. Other imaging studies (CT, MRI, PET/CT) to detect soft tissue masses arising from bone lesions or extramedullary disease may be indicated according to clinical circumstances.

Tests to Be Performed at Relapse

- The majority of the workup recommended at diagnosis is also pertinent at relapse.
- A bone marrow aspirate and/or biopsy should be performed if clinically indicated (ie, suspicion of hyposecretory MM progression or when MDS is considered [presence of cytopenias]).
- For patients with normal or no cytogenetic or FISH analyses at baseline, these tests should be performed at relapse.
- A skeletal survey may be indicated to detect possible lesions at risk for fracture.
- Other imaging studies (CT, MRI, PET/CT) to detect soft tissue masses arising from bone lesions or extramedullary disease may be indicated according to clinical circumstances.

Laboratory Tests for Initial Investigation of Suspected MM

- History and physical examination
- Complete blood count and differential; peripheral blood smear
- Chemistry screen including calcium and creatinine
- Serum protein electrophoresis, immunofixation
- Nephelometric quantification of serum immunoglobulins
- 24-hour urine collection for electrophoresis and immunofixation
- Bone marrow aspirate and/or biopsy
- Cytogenetics (metaphase karyotype and FISH)
- Radiological skeletal bone survey including spine, pelvis, skull, humeri and femurs; MRI in certain circumstances
- Serum β2 microglobulin and LDH
- Measurement of serum free light chains

Follow-Up Treatment

The majority of the laboratory tests indicated for initial assessment are to be repeated during follow-up.

Exceptions as follows:

- For most patients: No necessity for bone marrow examination to assess response provided that the disease can be monitored with serum and urine studies and no indication is present to change the patient’s treatment.
- No indication to repeat the metaphase karyotype, FISH studies or flow cytometric studies as a routine follow-up.
- No need to repeat skeletal survey in a patient who is responding to treatment unless he/she develops bone symptoms.

Faculty Comments

DR WOLF: One of the most important aspects of this 2009 International Myeloma Workshop Consensus Panel was the recommendation for more liberal use of the free light chain assay. Another recommendation was for use of FISH analysis for all patients.

Although I tend to disagree, the panel’s last statement indicates that skeletal survey remains the standard method for imaging, but MRI provides valuable diagnostic information. When the proceedings from the 2011 workshop in Paris are published, I believe we’ll see a stronger statement on the recommended use of MRI and PET.
Introduction

> Multiple myeloma is a heterogeneous disease with a variable disease course and survival ranging from <1 year with aggressive disease to >10 years with disease that is indolent at presentation.

> Evaluation of prognostic factors and risk stratification is important in defining treatment strategies, in the comparison of outcomes of therapeutic trials and in predicting survival.

> Risk stratification aspects evaluated by the consensus panel:
 – Purpose and timing, especially at diagnosis and relapse
 – Relationship to therapy and clinical and laboratory features, including genomic changes used to stratify patients and predict outcome

Risk Stratification: Purpose

> Risk stratification:
 – Should only be used to determine prognosis and treatment stratification
 – Does not indicate therapy initiation
 – Does not indicate therapy selection

Risk Stratification: Timing

> Timing
 – Diagnosis:
 • All current risk stratification is applicable to patients with newly diagnosed disease.
 – Relapse:
 • Change in risk factors at relapse has been documented, and the same genetic abnormalities characteristic of poor outcome at diagnosis may suggest poor outcome if detected at relapse.
 • Patients with good risk at diagnosis should be evaluated for high-risk features at relapse.
Risk Stratification Factors

- Detection of any cytogenetic abnormality is considered to suggest higher-risk disease.
- Cytogenetics with specific abnormalities and FISH with specific markers need to be performed on bone marrow samples.
- Poor risk, cytogenetically detected:
 - Chromosomal 13 or 13q deletion
 - t(4;14)
 - del(17p)
- Poor risk, FISH detected:
 - t(4;14)
 - t(14;16)
 - del(17p)

Investigation for Risk Stratification

- Recommended investigation:
 - Serum albumin and β2M to determine ISS stage
 - Bone marrow examination for t(4;14), t(14;16) and del(17p) on identified plasma cells by FISH
 - LDH
 - Immunoglobulin type — IgA
 - Histology — plasmablastic disease
- Additional investigation:
 - Cytogenetics
 - Gene expression profiling
 - Labeling index
 - MRI/PET scan
 - DNA copy number alteration by CGH/SNP array

Risk Stratification Factors (continued)

- Predictors of high-risk disease:
 - High serum β2M level
 - ISS Stage II and III incorporating high β2M
 - Low albumin
- Additional individual risk factors (unknown applicability, with no indication for change in treatment approach):
 - LDH
 - Extramedullary disease
 - High serum free light chain
 - Plasma cell leukemia
 - IgA
 - Renal failure
 - Plasmablastic disease
 - Serum free κ/λ ratio

Faculty Comments

DR BENSINGER: The panel confirmed what is known in the myeloma community — that certain features, such as serum albumin and the ISS staging that includes β2M, have been shown to be important for stratifying high versus low risk. Also, the cytogenetic abnormalities we have been aware of for several years have important prognostic value and convey high-risk features. It was also agreed that although certain features have been shown in some studies to be important for prognosis, the data were not enough to include in risk stratification at present. These include chromosome 1q abnormalities, gene expression and SNP arrays. The need is recognized for global standardization of gene expression and SNP arrays. These assays are not yet ready for widespread use for all patients with myeloma.
Phase 2 Randomized Open Label Study of 2 Modalities of Pomalidomide plus Low-Dose Dexamethasone in Patients with Multiple Myeloma, Refractory to Both Lenalidomide and Bortezomib. IFM 2009-02

Leleu X et al. Proc ASH 2010;Abstract 859.

Study Objectives

Primary objective:
- Response rate (partial response and better) according to International Myeloma Working Group in either arm

Secondary objectives (in either arm):
- Safety
- Time to response and duration of response
- Time to disease progression and event-free survival
- Overall survival
- Cytogenetic response in bone marrow plasma cells

Leleu X et al. Proc ASH 2010;Abstract 859.

IFM 2009-02 Phase II Study Schema

Eligibility
- Relapsed multiple myeloma
- ≥1 prior therapy
- Disease refractory to at least 2 cycles of both lenalidomide and bortezomib

R

Arm A 21/28
- Pomalidomide 4 mg PO on days 1-21
- Dexamethasone 40 mg PO on days 1, 8, 15 and 22

One cycle in either arm is 28 days

Arm B 28/28
- Pomalidomide 4 mg PO on days 1-28
- Dexamethasone 40 mg PO on days 1, 8, 15 and 22

Leleu X et al. Proc ASH 2010;Abstract 859.

Efficacy Assessment (Intent to Treat)

<table>
<thead>
<tr>
<th></th>
<th>Arm A (21/28) (n = 43)</th>
<th>Arm B (28/28) (n = 41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate (≥ partial response)</td>
<td>42%</td>
<td>39%</td>
</tr>
<tr>
<td>Stable disease</td>
<td>46.5%</td>
<td>51%</td>
</tr>
<tr>
<td>Time to best response</td>
<td>2.0 months</td>
<td>1.7 months</td>
</tr>
<tr>
<td>Time to progression, median*</td>
<td>7.0 months</td>
<td>9.7 months</td>
</tr>
</tbody>
</table>

* Median follow-up was 6.5 months for Arm A and 7 months for Arm B.

Leleu X et al. Proc ASH 2010;Abstract 859.
Pomalidomide and dexamethasone combination provides responses in patients with advanced myeloma refractory to bortezomib and lenalidomide.

Pomalidomide 4 mg once daily is well tolerated.

Pomalidomide 4 mg once daily x 21 q4wk does not appear inferior to pomalidomide 4 mg once daily x 28 q4wk.

Author Conclusions

Leleu X et al. Proc ASH 2010;Abstract 859.

DR BENSINGER: The third-generation IMiD pomalidomide is a promising new agent and is much more potent than prior generations of immunomodulating drugs. The effective doses of pomalidomide (2 to 4 mg daily) are much lower than the typical doses of thalidomide and lenalidomide. Studies have shown that pomalidomide in combination with dexamethasone or alone is effective at controlling disease in patients for whom a proteasome inhibitor or, in many cases, lenalidomide has failed. So pomalidomide can be effective even when a similar immunomodulatory agent has failed. Toxicity profiles appear similar to other IMiDs in that cytopenias seem to be the major toxicities associated with this agent. So reductions in hemoglobin or reductions in platelet levels or neutrophils are common toxicities.

Hematologic Adverse Events (AEs)

<table>
<thead>
<tr>
<th></th>
<th>Arm A (21/28)</th>
<th>Arm B (28/28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3 events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematologic events</td>
<td>23.5%</td>
<td>26.5%</td>
</tr>
<tr>
<td>Hemoglobin ≤8 g/dL</td>
<td>11.0%</td>
<td>14.0%</td>
</tr>
<tr>
<td>Neutrophils ≤1 x 10^9/L</td>
<td>34.0%</td>
<td>33.5%</td>
</tr>
<tr>
<td>Platelets ≤50 x 10^9/L</td>
<td>18.0%</td>
<td>21.0%</td>
</tr>
</tbody>
</table>

Select Nonhematologic AEs

<table>
<thead>
<tr>
<th></th>
<th>Arm A (21/28)</th>
<th>Arm B (28/28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage nonhematologic AEs out of all AEs</td>
<td>12.0%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Deep vein thrombosis (with prophylactic treatment)</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Asthenia</td>
<td>9.3%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Cramps</td>
<td>0%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>0%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

Leleu X et al. Proc ASH 2010;Abstract 859.

Faculty Comments

Leleu X et al. Proc ASH 2010;Abstract 859.
Pomalidomide plus Low-Dose Dexamethasone in Myeloma Refractory to Both Bortezomib and Lenalidomide: Comparison of Two Dosing Strategies in Dual-Refractory Disease

Introduction

> Pomalidomide/dexamethasone (pom/dex) regimen using a pom dose of 2 mg/day has demonstrated response rates of:
 - 63% in relapsed multiple myeloma (JCO 2009;27:5008)
 - 47% in lenalidomide-refractory cohort (Leukemia 2010;24:1934)

> Pom has been evaluated at doses of 4 mg, either continuously or for 21 of 28 days as salvage therapy for patients with relapsed myeloma (Proc ASH 2010;Abstract 864; Proc ASH 2010;Abstract 859).

> Two sequential Phase II trials were opened to evaluate the efficacy of a pom/dex regimen using 2 different doses of pom in patients with multiple myeloma refractory to both lenalidomide and bortezomib.

Study Methods

> Two sequential Phase II trials opened with 35 patients each:
 - May 2009-Nov 2009: 2 mg/day pom cohort
 - Nov 2009-Apr 2010: 4 mg/day pom cohort

> Efficacy rule for 2 mg pom cohort:
 - Cohort considered ineffective if a maximum 18 confirmed responders observed in the first 33 evaluable patients

> Efficacy rule for 4 mg pom cohort:
 - Cohort considered ineffective if a maximum 11 confirmed responders observed in the first 33 evaluable patients

> Responses were assessed according to IMWG criteria.

Treatment Schema

Eligibility

> Previously treated multiple myeloma refractory to lenalidomide and bortezomib

Dex 40 mg days 1, 8, 15, 22

Pom 2 mg or 4 mg daily continuous, days 1-28

28-day cycle
> Although the study design goals were not met for either cohort, pom/dex was significantly active in dual-refractory myeloma at both dosing levels, and responses were durable.

> Pom/dex demonstrated activity in patients with dual-refractory multiple myeloma who were considered to be at high risk.

> Myelosuppression was the most common toxicity.

> It is not clear whether an advantage exists with the higher 4-mg dose of pom versus the 2-mg dose using the day 1-28 schedule.

> Additional studies are ongoing exploring whether a regimen of 4 mg of pom for 21 of 28 days is superior to 2 mg continuously.

Author Conclusions

Select Grade 3/4 Adverse Events

<table>
<thead>
<tr>
<th>Clinical variable</th>
<th>Pom 2 mg (n = 35)</th>
<th>Pom 4 mg (n = 35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>26%</td>
<td>26%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>51%</td>
<td>65%</td>
</tr>
<tr>
<td>Peripheral sensory neuropathy</td>
<td>0%</td>
<td>3%</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>9%</td>
<td>9%</td>
</tr>
</tbody>
</table>

Faculty Comments

DR WOLF: I believe that pomalidomide will be another important drug for the treatment of multiple myeloma. It is a tolerable drug that shows responses in patients with disease that is refractory to lenalidomide. It may be slightly better than lenalidomide in the sense that little neuropathy was observed with pomalidomide.

I don’t believe, however, that this study established the correct dose of the drug as being 4 or 2 mg. In the future, it would be interesting to address whether pomalidomide has activity if used before or instead of lenalidomide for patients with multiple myeloma.

Carfilzomib, Lenalidomide, and Dexamethasone in Newly Diagnosed Multiple Myeloma: Initial Results of Phase I/II MMRC Trial

Introduction

- Carfilzomib is a novel, irreversible proteasome inhibitor with promising single-agent activity and a favorable toxicity profile in relapsed/refractory multiple myeloma (MM) (Proc ASCO 2009;Abstract 8504).
- Additive anti-MM effects have been reported with carfilzomib in combination with lenalidomide and dexamethasone (CRd) in preclinical studies (Proc ASH 2009;Abstract 304).
- Lack of overlapping toxicity allows for the use of these agents at full doses and for extended durations in relapsed/refractory MM (Proc ASH 2009;Abstract 304).
- Current study goals: To determine the maximum tolerated dose (MTD) and to assess safety and efficacy of CRd in newly diagnosed MM.

Methods

- Phase I carfilzomib dose-escalation trial
 - Carfilzomib as only dose-escalating agent (IV on days 1, 2, 8, 9, 15, 16 in 28-day cycles)
 - Level 1: 20 mg/m²
 - Level 2: 27 mg/m² (initial maximal planned dose)
 - Level -1: 15 mg/m² (if needed)
 - Level 3: 36 mg/m² (study amendment inclusion after toxicity assessment)
 - Phase I/II (target accrual = 36)
 - After ≥4 cycles, patients achieving ≥partial response (PR) proceed to stem cell collection (SCC) and autologous stem cell transplant (ASCT).
 - ASCT candidates offered continued CRd treatment after SCC
 - After completion of 8 cycles, patients receive 28-day maintenance cycles.
 - Carfilzomib (days 1, 2, 15, 16), lenalidomide days 1-21 and dexamethasone weekly at the doses tolerated at the end of 8 cycles
Best Responses to Date

<table>
<thead>
<tr>
<th>Clinical response</th>
<th>CRd (n = 27*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥PR</td>
<td>96%</td>
</tr>
<tr>
<td>≥Very good PR (VGPR)</td>
<td>70%</td>
</tr>
<tr>
<td>Complete response (CR)/near CR (nCR)/stringent CR</td>
<td>55%</td>
</tr>
</tbody>
</table>

* 4 patients not evaluable for response

Jakubowiak AJ et al. Proc ASH 2010;Abstract 862.

Select Adverse Events (Abstract)

<table>
<thead>
<tr>
<th>Hematologic</th>
<th>CRd (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia (Grade 3 or 4)</td>
<td>14%</td>
</tr>
<tr>
<td>Thrombocytopenia (Grade 3 or 4)</td>
<td>14%</td>
</tr>
<tr>
<td>Anemia (Grade 3)</td>
<td>10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nonhematologic (Grade 3)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral neuropathy (Grade 3 or 4)</td>
<td>0%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>5%</td>
</tr>
<tr>
<td>Mood alteration</td>
<td>5%</td>
</tr>
<tr>
<td>Glucose elevations</td>
<td>24%</td>
</tr>
<tr>
<td>Deep vein thrombosis (while receiving aspirin prophylaxis)</td>
<td>5%</td>
</tr>
</tbody>
</table>

Jakubowiak AJ et al. Proc ASH 2010;Abstract 862.

Author Conclusions

> The MTD of carfilzomib was not reached (data not shown).

> CRd is well tolerated and highly active in newly diagnosed MM.
 - ≥PR = 96%
 - ≥VGPR = 70%
 - CR/nCR = 33%

> These data represent the first report to date on treatment of front-line myeloma with carfilzomib and add support to the Phase III trial of CRd versus Rd in relapsed MM (NCT01080391).

Jakubowiak AJ et al. Proc ASH 2010;Abstract 862.

Faculty Comments

DR BENSINGER: Carfilzomib is a promising second-generation proteasome inhibitor. It is more target specific and probably has a lower incidence of off-target side effects, the most notable being peripheral neuropathy. This trial evaluated carfilzomib at the maximum preferred dose of 27 mg/m² in combination with lenalidomide and dexamethasone in about 24 patients with newly diagnosed myeloma. Basically, almost 100% of patients responded to treatment. Of the patients enrolled, 23 have remained on the trial. A major degree of peripheral neuropathy has not been reported in this trial. So this regimen yields a high response rate, a high degree of efficacy and a high degree of tolerance. Carfilzomib will be an important agent to add to our armamentarium.
First-Line Treatment with Zoledronic Acid as Compared with Clodronic Acid in Multiple Myeloma (MRC Myeloma IX): A Randomized Controlled Trial

MRC Myeloma IX: A Phase III Trial of Zoledronic Acid (ZOL) versus Clodronic Acid (CLO)

- Eligibility (N = 1,960)
 - Newly diagnosed multiple myeloma (MM) (Stage I, II, III)
- Treatment continued at least until disease progression
- ZOL 4 mg* IV q3-4wk + intensive or nonintensive chemotherapy (n = 981)
- CLO 1,600 mg/d PO + intensive or nonintensive chemotherapy (n = 979)

* Dose-adjusted for patients with impaired renal function, per the prescribing information

Primary Endpoints

<table>
<thead>
<tr>
<th>Clinical variable</th>
<th>ZOL (n = 981)</th>
<th>CLO (n = 979)</th>
<th>Hazard ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median overall survival</td>
<td>50.0 mo</td>
<td>44.5 mo</td>
<td>0.87</td>
<td>0.04</td>
</tr>
<tr>
<td>Median progression-free survival</td>
<td>19.5 mo</td>
<td>17.5 mo</td>
<td>0.91</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Overall response rates did not differ significantly between ZOL and CLO groups

- Patients receiving intensive induction chemotherapy (78% vs 76%; p = 0.43)
- Patients receiving nonintensive induction chemotherapy (50% vs 46%; p = 0.18)

Treatment Status

<table>
<thead>
<tr>
<th></th>
<th>ZOL (n = 981)</th>
<th>CLO (n = 979)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up (median)</td>
<td>3.7 years</td>
<td>3.8 years</td>
</tr>
<tr>
<td>Still receiving bisphosphonate [BP]</td>
<td>11%</td>
<td>13%</td>
</tr>
<tr>
<td>BP administration not confirmed</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>Discontinued study before disease progression</td>
<td>24%</td>
<td>19%</td>
</tr>
<tr>
<td>Disease progression or death</td>
<td>59%</td>
<td>64%</td>
</tr>
<tr>
<td>Time on treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensive pathway</td>
<td>396 days</td>
<td>409 days</td>
</tr>
<tr>
<td>Nonintensive pathway</td>
<td>320 days</td>
<td>306 days</td>
</tr>
</tbody>
</table>

BONE-TARGETED TREATMENT

Relative Risk Reduction

<table>
<thead>
<tr>
<th>Risk reduction</th>
<th>Hazard ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival</td>
<td>16%</td>
<td>0.84</td>
</tr>
<tr>
<td>Progression-free survival</td>
<td>12%</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Author Conclusions

> ZOL is superior to CLO for the prevention of skeletal-related events (SREs) in patients with newly diagnosed MM.

> Adding ZOL to standard antimyeloma therapy is generally well tolerated and prolongs overall survival vs CLO.

– Survival benefit is independent of SRE reduction.

> These data further support the anticancer activity of ZOL and provide evidence that ZOL should be considered for early integration into treatment regimens for patients with newly diagnosed MM.

Select Adverse Events (AEs)

<table>
<thead>
<tr>
<th>AE</th>
<th>Intensive pathway</th>
<th>Nonintensive pathway</th>
<th>Overall p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOL (n = 555)</td>
<td>CLO (n = 556)</td>
<td>ZOL (n = 428)</td>
<td>CLO (n = 423)</td>
</tr>
<tr>
<td>Osteonecrosis of the jaw (ONJ)</td>
<td>4%</td>
<td><1%</td>
<td>3%</td>
</tr>
<tr>
<td>Thromboembolic events</td>
<td>19%</td>
<td>15%</td>
<td>12%</td>
</tr>
<tr>
<td>Any serious AE</td>
<td>59%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Infection</td>
<td>9%</td>
<td>11%</td>
<td>4%</td>
</tr>
<tr>
<td>Musculoskeletal, connective tissue, bone disorders</td>
<td>1%</td>
<td><1%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Faculty Comments

DR BENSINGER: This is a landmark study by the Medical Research Council in the United Kingdom that included all patients with myeloma enrolled in the United Kingdom over a 4-year period between 2003 and 2007. Compared to clodronate (CLO), zoledronic acid (ZOL) extended survival by 5 1/2 months. The absolute time of progression-free interval was about 2 months, but it provided compelling evidence of a direct antimyeloma effect of ZOL. This result underscores that ZOL is one of the most potent of the bisphosphonates. With regard to adverse events, a difference was observed between the 2 groups in the incidence of ONJ — it was 3% to 4% for ZOL versus <1% for CLO. Although ONJ is something you need to be aware of and counsel your patients about, I believe the benefits of using continuous ZOL markedly outweigh the risks.

Does Zoledronic Acid Reduce Skeletal-Related Events and Improve Progression-Free Survival in Patients with Multiple Myeloma with or without Bone Disease? MRC Myeloma IX Study Results

Bisphosphonate Treatment in Multiple Myeloma: Should They Be Used Until Progression?

1 Boyd K et al. Proc ASCO 2011;Abstract 8010.
2 Davies FE et al. Proc ASCO 2011;Abstract 8011.

Skeletal-Related Events (SREs) — Overall Population

ZOL reduced the risk of SREs by 26% vs CLO (HR = 0.74; p = 0.0004)

SREs by Baseline Bone Lesion Status

<table>
<thead>
<tr>
<th>Baseline status</th>
<th>ZOL</th>
<th>CLO</th>
<th>Hazard ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone lesions at baseline</td>
<td>34%</td>
<td>43%</td>
<td>0.774</td>
<td>0.004</td>
</tr>
<tr>
<td>No bone lesions at baseline</td>
<td>9%</td>
<td>17%</td>
<td>0.526</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Highlights the importance of administering treatment to all patients regardless of skeletal morbidity at presentation.

Author Conclusions — SREs

> ZOL significantly reduced the relative risk of SREs vs CLO (p = 0.0004).
 – Reductions were documented regardless of bone disease status at presentation.

> SRE rates were higher among patients with preexisting versus no bone disease at presentation.

> SRE reduction with ZOL was apparent within the first year regardless of bone disease status at presentation (data not shown).
Overall Survival (OS) — Patients with Bone Disease at Baseline

- ZOL significantly increased OS and PFS in the overall patient population compared to CLO.
 - OS and PFS benefits appeared limited to the patients with bone disease at presentation (data not shown).
 - The Myeloma IX study was not powered to compare the effects of the treatments on survival in different patient subsets.
- Adverse events were consistent with established safety profiles of the agents (data not shown).

Survival — Overall Population

- OS (overall) 5.5 months
- PFS (overall) 2.0 months

Risk reduction: 16% 0.0118
Risk reduction: 15% 0.0178
Risk reduction: 12% 0.0179

Multiple Event Analyses — SREs by Year

- Mean SREs: Clodronate (n = 682) vs. Zoledronic acid (n = 668)
- Hazard ratio (ZOL versus CLO): 0.82; p = 0.0107
- Survival, years
- HR = 0.82; p = 0.0107

With permission from Boyd K et al. Proc ASCO 2011;Abstract 8010.

With permission from Davies FE et al. Proc ASCO 2011;Abstract 8011.
ZOL Reduced SREs versus CLO During Maintenance Therapy

> ZOL increases overall survival versus CLO with benefits becoming significant within the first 4 months of treatment.
> ZOL significantly decreased the risk of SREs versus CLO during each of the first 3 years on study, though additional follow-up is needed (data not shown).
> ZOL significantly decreased the risk of SREs versus CLO during the maintenance portion of the study.
> SRE benefits with ZOL were seen within the first year.
> These analyses support the early initiation of ZOL to prevent SREs and prolong survival, and they support treatment at least until disease progression to provide long-term reduction in SREs.

Author Conclusions — Benefit of Bisphosphonates Over Time

DR BENSINGER: The use of ZOL resulted in fewer SREs for the entire population. Not only did ZOL reduce bone lesions in patients with preexisting disease, but patients with no bone disease at baseline who received ZOL had fewer SREs. The fact that bisphosphonates can prevent SREs in patients who do not have them at presentation has been reported previously, but the fact that ZOL was superior to CLO is useful to know.

The study by Davies examined the benefit of ZOL over time, focusing on a remarkable aspect of this trial, that patients received bisphosphonates continuously until disease progression. Previously we used a 2-year treatment term based on initial studies. This changed my practice, and I now recommend ZOL throughout the course of the patient’s disease.

Faculty Comments
1. In the Phase III UPFRONT study, which of the following bortezomib-based regimens was shown to be active in the treatment of newly diagnosed MM in elderly patients?
 a. Bortezomib/melphalan/prednisone
 b. Bortezomib/thalidomide/dexamethasone
 c. Bortezomib/dexamethasone
 d. All of the above

2. A weekly bortezomib regimen has __________ when compared to a twice-weekly bortezomib regimen in the treatment of MM in elderly patients.
 a. Similar efficacy and toxicity
 b. Similar efficacy and reduced toxicity
 c. Reduced efficacy and toxicity

3. In a large, randomized Phase III study for patients with previously untreated myeloma who were eligible for transplant, induction and consolidation therapy with VTD significantly improved clinical outcomes compared to TD therapy in patients receiving double autologous stem cell transplant (ASCT).
 a. True
 b. False

4. Data from the CALGB-100104 and IFM 2005-02 trials indicate that lenalidomide maintenance therapy is effective in patients with MM.
 a. True
 b. False

5. Updated data presented at the 13th International Myeloma Workshop by the CALGB indicate that patients receiving lenalidomide maintenance therapy experience a(n) __________ risk of developing second cancers compared to patients on the placebo arm.
 a. Lower
 b. Higher
 c. Equal

6. Subcutaneous administration of bortezomib for patients with relapsed MM was found to be equivalent to intravenous administration for which of the following efficacy outcomes?
 a. Overall response rate
 b. Median time to disease progression
 c. One-year overall survival rate
 d. Both a and c
 e. All of the above

7. The rates of peripheral neuropathy associated with bortezomib were reduced with subcutaneous administration compared to intravenous administration.
 a. True
 b. False

8. A retrospective analysis of patients with MM and renal impairment (RI) who received lenalidomide and dexamethasone demonstrated that patients with moderate to severe RI had __________.
 a. A decreased risk of thrombocytopenia
 b. A shorter overall survival
 c. More frequent lenalidomide dose interruptions/discontinuations
 d. Both a and b
 e. Both b and c

9. Patients who received zoledronic acid on the MRC Myeloma IX trial experienced a(n) __________ incidence of osteonecrosis of the jaw compared to patients who received clodronate.
 a. Increased
 b. Decreased

10. In a Phase I/II MMRC trial evaluating carfilzomib, lenalidomide and dexamethasone for patients with newly diagnosed MM (NDMM), the authors reported a >95% response rate (partial response or better).
 a. True
 b. False
Recall the design and eligibility criteria for ongoing clinical trials in newly diagnosed and relapsed MM, and enroll or refer appropriate patients for study participation.

Consider recent Phase III trial data on the use of bisphosphonates for osteolytic and nonosteolytic MM when selecting frequency of administration and total duration of therapy.

Communicate the benefits and risks of postinduction maintenance therapy to appropriately selected patients with MM.

Recognize the treatment-associated side effects of bortezomib, and offer patients acceptable alternative dosing/administration and/or supportive management approaches.

Was the activity evidence based, fair, balanced and free from commercial bias?

☐ Yes ☐ No ☐ Other (please explain): __________________________

Please identify how you will change your practice as a result of completing this activity (select all that apply).

☐ This activity validated my current practice; no changes will be made

☐ Change the management and/or treatment of my patients

☐ Create/revise protocols, policies and/or procedures

☐ Other (please explain): __________________________

If you intend to implement any changes in your practice, please provide 1 or more examples:

The content of this activity matched my current (or potential) scope of practice.

☐ Yes ☐ No ☐ Other (please explain): __________________________

Please respond to the following learning objectives (LOs) by circling the appropriate selection:

4 = Yes 3 = Will consider 2 = No 1 = Already doing N/M = LO not met N/A = Not applicable

- Progression-free survival in response to VTD induction and consolidation with double ASCT in patients with NDMM and poor prognosis
- Efficacy and safety of weekly versus twice-weekly bortezomib in MM
- Clinical benefits and risk of second primary cancers with maintenance lenalidomide in MM
- IFM 2009-02: Response rates of 2 dosing strategies of pomalidomide in combination with low-dose dexamethasone for relapsed/refractory MM
- Efficacy and skeletal-related events with zoledronic acid versus clodronate in NDMM

As a result of this activity, I will be able to:

- Appraise recent data on therapeutic advances and changing practice standards in MM, and integrate this information into the selection of optimal systemic therapy for patients with MM.
- Compare and contrast the benefits and risks of lenalidomide- and bortezomib-based induction therapy, and consider the role of combined immunomodulatory/proteasome inhibitor regimens.
- Utilize biomarkers to risk-stratify patients with MM, and recommend systemic treatment commensurate with prognosis and likelihood of therapeutic response.
- Recognize the treatment-associated side effects of bortezomib, and offer patients acceptable alternative dosing/administration and/or supportive management interventions to address them.
- Communicate the benefits and risks of postinduction maintenance therapy to appropriately selected patients with MM.
- Consider recent Phase III trial data on the use of bisphosphonates for osteolytic and nonosteolytic MM when selecting frequency of administration and total duration of bisphosphonate therapy.
- Recall the design and eligibility criteria for ongoing clinical trials in newly diagnosed and relapsed MM, and enroll or refer appropriate patients for study participation.

Please describe any clinical situations that you find difficult to manage or resolve that you would like to see addressed in future educational activities:

Would you recommend this activity to a colleague?

☐ Yes ☐ No ☐ Other (please explain): __________________________

Additional comments about this activity:

REQUEST FOR CREDIT — Please print clearly

Name: __________________________ Specialty: __________________________

Professional Designation: ☐ MD ☐ DO ☐ PharmD ☐ NP ☐ RN ☐ PA ☐ Other: __________________________ City/State/Zip: __________________________

Telephone: __________________________ Fax: __________________________ Email: __________________________

Research To Practice designates this enduring material for a maximum of 2.75 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity. I certify my actual time spent to complete this educational activity to be _________ hour(s).

Signature: __________________________ Date: __________________________

To obtain a certificate of completion and receive credit for this activity, please complete the Post-test, fill out the Educational Assessment and Credit Form and fax both to (800) 447-4310, or mail both to Research To Practice, One Biscayne Tower, 2 South Biscayne Boulevard, Suite 3600, Miami, FL 33131. You may also complete the Post-test and Educational Assessment online at www.ResearchToPractice.com/YIRMM11/CME.
COMMERCIAL SUPPORT
This activity is supported by educational grants from Celgene Corporations and Millennium: The Takeda Oncology Company.

PHARMACEUTICAL AGENTS DISCUSSED IN THIS PROGRAM
— Thalidomide
— Lenalidomide
— Pomalidomide
— Bortezomib
— Carfilzomib
— Dexamethasone
— Prednisone
— Prednisolone
— Daratumumab
— Denosumab
— Zoledronic acid
— Ibandronate
— Prolia
— Aredia

RESEARCH TO PRACTICE STAFF AND EXTERNAL REVIEWERS
— Dr. David S. Bensinger was an independent physician reviewer for fair balance, scientific objectivity of studies referenced and a member of the faculty, planners and managers of CME activities. Real or apparent conflicts of interest were identified with the faculty, planners and managers of CME activities. Real or apparent conflicts of interest were resolved through a conflict of interest resolution agreement.

The opinions expressed are those of the presenters and are not to be construed as those of the American Society of Hematology, the institutions with which the presenters are affiliated, or the institutions with which the faculty, planners and managers of CME activities are affiliated. The opinions and recommendations expressed do not necessarily reflect the policies of Research To Practice or the institutions with which the faculty, planners and managers of CME activities are affiliated. The viewer/participant should use their best clinical judgment in the presentation of the patient, and not assume that the points are representations of official guidelines or recommendations. The viewer/participant should also be aware that medications and other therapies and devices presented may not have been approved by the US Food and Drug Administration (FDA).

Copyright © 2011 Research To Practice. All rights reserved.

The compact disc, Internet content and accompanying printed materials are not intended to serve as a guideline for patient management. Any procedures, medications or other courses of diagnosis or treatment discussed or presented in this activity is not meant to serve as a guideline for patient management. Participants have an implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented in this activity is not intended to serve as a substitute for the professional judgment of the healthcare provider. Any procedures, medications or other courses of diagnosis or treatment discussed or presented may not have been approved by the US Food and Drug Administration (FDA). The opinions expressed do not necessarily reflect those of Research To Practice or the institutions with which the faculty, planners and managers of CME activities are affiliated.
A CME monograph and speaker’s slide kit summarizing the year’s most important meeting presentations and journal articles

Multiple Myeloma: 2010-2011

Faculty
William I Bensinger, MD
Jeffrey L Wolf, MD
Jeffrey A Zonder, MD

Editor
Neil Love, MD

Contents
Monograph
CD with PowerPoint slide kit including expert commentary

Copyright © 2011 Research To Practice.
This activity is supported by educational grants from Celgene Corporation and Millennium: The Takeda Oncology Company.

Last review date: November 2011
Release date: November 2011
Expiration date: November 2012
Estimated time to complete: 2.75 hours