Double-Blind, Randomized Phase IIb Study of Paclitaxel with or without Sorafenib for Patients with HER2-Negative Advanced Breast Cancer
OVERVIEW OF ACTIVITY

The annual San Antonio Breast Cancer Symposium (SABCS) is unmatched in its significance with regard to the advancement of breast cancer treatment. It is targeted by many members of the clinical research community as the optimal forum in which to unveil new clinical data. This creates an environment each year where published results from a plethora of ongoing clinical trials lead to the emergence of many new therapeutic agents and changes in the indications for existing treatments across all breast cancer subtypes. In order to offer optimal patient care — including the option of clinical trial participation — the practicing medical oncologist must be well informed of the rapidly evolving data sets in breast cancer. To bridge the gap between research and patient care, this CME activity will deliver a serial review of the most important emerging data sets from the latest SABCS meeting, including expert perspectives on how these new evidence-based concepts can be applied to routine clinical care. This activity will assist medical oncologists and other cancer clinicians in the formulation of optimal clinical management strategies for breast cancer.

LEARNING OBJECTIVE

- Review the potential benefit of combining sorafenib with paclitaxel as first-line therapy for HER2-negative advanced breast cancer.

ACCREDITATION STATEMENT

Research To Practice is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

CREDIT DESIGNATION STATEMENT

Research To Practice designates this educational activity for a maximum of 0.25 AMA PRA Category 1 Credits™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

HOW TO USE THIS CME ACTIVITY

This CME activity contains slides and edited commentary. To receive credit, the participant should review the slide presentation, read the commentary and complete the Educational Assessment and Credit Form located at CME.ResearchToPractice.com.

CONTENT VALIDATION AND DISCLOSURES

Research To Practice (RTP) is committed to providing its participants with high-quality, unbiased and state-of-the-art education. We assess potential conflicts of interest with faculty, planners and managers of CME activities. Real or apparent conflicts of interest are identified and resolved through a conflict of interest resolution process. In addition, all activity content is reviewed by both a member of the RTP scientific staff and an external, independent physician reviewer for fair balance, scientific objectivity of studies referenced and patient care recommendations.

FACULTY — The following faculty (and their spouses/partners) reported real or apparent conflicts of interest, which have been resolved through a conflict of interest resolution process:

Adam M Brufsky, MD, PhD
Associate Professor of Medicine, University of Pittsburgh
Associate Director for Clinical Investigation
University of Pittsburgh Cancer Institute

Co-Director, Comprehensive Breast Cancer Center
Associate Division Chief, University of Pittsburgh
Department of Medicine, Division of Hematology/Oncology
Pittsburgh, Pennsylvania

EDITOR — Neil Love: Dr Love is president and CEO of Research To Practice, which receives funds in the form of educational grants to develop CME activities from the following commercial interests: Abraxis BioScience, Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer Pharmaceuticals Corporation/Onyx Pharmaceuticals Inc, Biogen Idec, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Centocor Ortho Biotech Services LLC, Cephalon Inc, Eisai Inc, EMD Serono Inc, Genentech BioOncology, Genomic Health Inc, Genzyme Corporation, GlaxoSmithKline, ImClone Systems Incorporated, Lilly USA LLC, Millennium Pharmaceuticals Inc, Monogram BioSciences Inc, Novartis Pharmaceuticals Corporation, OSI Oncology, Roche Laboratories Inc and Sanofi-Aventis.

RESEARCH TO PRACTICE STAFF AND EXTERNAL REVIEWERS — The scientific staff and reviewers for Research To Practice have no real or apparent conflicts of interest to disclose.

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration. Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

This program is supported by educational grants from AstraZeneca Pharmaceuticals LP, Bayer Pharmaceuticals Corporation/Onyx Pharmaceuticals Inc, Genentech BioOncology, Genomic Health Inc and GlaxoSmithKline.

Last review date: January 2010
Expiration date: January 2011
IN THIS ISSUE:

- Phase II: **Sorafenib shows trend to improved PFS with paclitaxel**
- Phase II: **Sorafenib improves PFS with capecitabine**
- Phase II: **Sunitinib has similar or inferior effect as capecitabine**
- Mechanism of action of TKIs: **Spectacular NEJM artwork** (best in the biz)

During a 2008 interview, I queried leukemia maven Dr Michael Keating about current clinical trials in CML. “Imatinib is the Big Dog, and while there are Phase III studies comparing it to second-generation TKIs, they’re trying to prove that something’s better than magic.” Nine years after the FDA approval of what sure seems like magic, last month at ASH nilotinib actually was shown to be superior to imatinib when using state-of-the-art CML RT-PCR and FISH assay technology. The unexpected bottom line is, in a disease that’s more than 90 percent “curable” with imatinib treatment, the rate of accelerated phase/blast transformation with nilotinib was 0.4 percent compared to 3.9 percent for imatinib. That, along with equal or better tolerability, might just be practice changing in the near future.

Meanwhile, investigators are desperately looking for TKIs in other cancers that come close to the Big Dog, and other than GIST, perhaps the greatest success has been in non-small cell lung cancer, in which first EGFR mutant tumors and now EML4-ALK fusion cancers seem to fit the oncogene addiction model and respond pretty well to TKIs.

On the angiogenic side of the equation, renal cell cancer seems to lead the way, with the VEGFR TKIs sunitinib and sorafenib benefiting many or most treated patients, although a long way from magic. In breast cancer, most of the encouraging TKI news has been with HER2-positive tumors, for which lapatinib has significant antitumor activity both with chemo and trastuzumab, and neratinib, another HER2 TKI, is demonstrating promising activity.

HER2-negative tumors are a different matter, and until San Antonio, it was difficult to get excited about what was seen. However, in back-to-back oral presentations, Bill Gradishar and then Jose Baselga reported two Phase II randomized trials demonstrating PFS advantages when sorafenib was added to paclitaxel in one study and capecitabine in another. Dermatologic toxicity was substantial, particularly when
sorafenib was combined with capecitabine, suggesting the need for dose/schedule adjustments in future trials.

At a breast cancer roundtable we hosted last week in our Miami studio with an impressive faculty of nine investigators, it was noted that sorafenib got its moniker partly in recognition of RAF inhibitory properties but that the agent is also known to inhibit PDGFR, along with what is thought to be its major effect on VEGF blockade. I shared with the group my recent surprise when another MD Anderson leukemia wizard, Dr Farhad Ravandi, told me that sorafenib is also being evaluated clinically as an FLT3 inhibitor in patients with AML.

The two Phase II sorafenib studies reported at San Antonio are part of an integrated set of four Phase II trials called the TIES program, and roundtable participant Cliff Hudis noted that Memorial and ACORN are participating in the effort by evaluating capecitabine or gemcitabine, with or without sorafenib. During the roundtable discussion Edith Perez stated she thought that this complex multitargeted TKI might end up having similar anti-angiogenic activity as bevacizumab but with the important option of oral administration, although the faculty was uncertain whether sorafenib will end up in daily breast cancer clinical practice.

As suggested by our graphics slide set on potential mechanisms of action of TKIs in cancer, there is an urgent need to dissect the specific pathways affected by the panoply of novel targeted agents like sorafenib. Only this will allow us to exchange our current organ-based cancer treatment strategy for a molecular one as we learn how to select the correct biologic agent for the appropriate patient.

Next up on 5-Minute Journal Club: More from San Antonio and a simultaneous *Lancet Oncology* publication on the SWOG node-positive Oncotype DX® study: No surprises, and more evidence to take action.

Neil Love, MD
Research To Practice
Miami, Florida
Double-Blind, Randomized Phase IIb Study of Paclitaxel with or without Sorafenib for Patients with HER2-Negative Advanced Breast Cancer

Presentation discussed in this issue

Gradishar WJ et al. A double-blind, randomized Phase IIb study evaluating the efficacy and safety of sorafenib compared to placebo when administered in combination with paclitaxel in patients with locally recurrent or metastatic breast cancer. San Antonio Breast Cancer Symposium 2009;Abstract 44.

Slides from a presentation at SABCS 2009 and transcribed comments from a recent interview with Adam M Brufsky, MD, PhD (12/23/09)

A Double-Blind, Randomized Phase 2b Study Evaluating the Efficacy and Safety of Sorafenib Compared to Placebo when Administered in Combination with Paclitaxel in Patients with Locally Recurrent or Metastatic Breast Cancer

Gradishar WJ et al. SABCS 2009;Abstract 44.
Introduction

- Phase III trial of first-line paclitaxel and bevacizumab (bev) in patients with metastatic breast cancer (mBC) has demonstrated improved efficacy when compared to paclitaxel alone (NEJM 2007;357:2666).
 - Median progression free survival (PFS) = 11.8 mos vs 5.9 mos
 - Objective response rate (ORR) = 36.9% vs 21.2%
- Phase II trials have demonstrated modest single-agent activity with sorafenib in patients with heavily pre-treated mBC (JCO 2009;27:11, AntiCancer Drugs 2009;20:616).
- Phase I trial of combined paclitaxel, carboplatin and sorafenib therapy has shown regimen to be well tolerated in patients with advanced solid tumors (Clin Cancer Res 2008;14:4836).

Current Study Objectives:
- Assess the safety and efficacy of paclitaxel combined with sorafenib compared to paclitaxel and placebo for locally recurrent or metastatic BC (mBC).

Gradishar W et al. SABCS 2009;Abstract 44.

Phase IIb Double-Blind Study of Sorafenib Compared to Placebo When Combined with Paclitaxel

Eligibility
- Locally recurrent or mBC HER2-negative
- No prior cytotoxic therapy in the metastatic setting

Sorafenib 400mg po bid + Paclitaxel 90mg/m² IV qWk 3 of every 4 weeks

Placebo 400mg po bid + Paclitaxel 90mg/m² IV qWk 3 of every 4 weeks

Gradishar W et al. SABCS 2009;Abstract 44.
Primary Endpoint: PFS (Intent-to-Treat Population)

SOR + PAC
N = 119

Median PFS, mos 6.9
HR (95% CI) 0.788 (0.558-1.112)

PL + PAC
N = 118

With permission from Gradishar W et al. SABCS 2009;Abstract 44.

Secondary Endpoint: Time to Progression (Intent-to-Treat Population)

SOR + PAC
N = 119

Median TTP, mos 8.1
HR (95% CI) 0.674 (0.465-0.975)

PL + PAC
N = 118

With permission from Gradishar W et al. SABCS 2009;Abstract 44.
Response Rate

<table>
<thead>
<tr>
<th>Clinical Response, n (%)</th>
<th>Sorafenib + Paclitaxel (n=119)</th>
<th>Placebo + Paclitaxel (n=118)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate</td>
<td></td>
<td></td>
<td>0.0234</td>
</tr>
<tr>
<td>Complete response</td>
<td>80 (67%)</td>
<td>64 (54%)</td>
<td></td>
</tr>
<tr>
<td>Partial response</td>
<td>8 (7%)</td>
<td>5 (4%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72 (61%)</td>
<td>59 (50%)</td>
<td></td>
</tr>
<tr>
<td>Stable disease</td>
<td>16 (13%)</td>
<td>32 (27%)</td>
<td>—</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>9 (8%)</td>
<td>17 (14%)</td>
<td>—</td>
</tr>
<tr>
<td>Median duration of response*</td>
<td>5.6 mos</td>
<td>3.7 mos</td>
<td>0.0079</td>
</tr>
</tbody>
</table>

*Calculated for responders only. Nonresponders were assigned a value of zero.

Gradishar W et al. SABCS 2009;Abstract 44.

Select Adverse Events - Grade 3/4 (Safety Population)

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Sorafenib + Placebo (n=115)</th>
<th>Placebo + Paclitaxel (n=118)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand-foot syndrome</td>
<td>30%</td>
<td>3%</td>
</tr>
<tr>
<td>Asthenia</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>13%</td>
<td>7%</td>
</tr>
<tr>
<td>Anemia</td>
<td>10%</td>
<td>6%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Gradishar W et al. SABCS 2009;Abstract 44.
ADAM M BRUFSKY, MD, PhD: Gradishar and his colleagues examined the activity of sorafenib, a multitargeted tyrosine kinase inhibitor against VEGF, EGFR, VGFR1 and VGFR2, in advanced breast cancer. The idea behind this study is great, especially since we know that activity with sorafenib already exists in both renal cell and hepatocellular carcinoma. Therefore, it’s possible that sorafenib is also active in breast cancer.

This trial is part of the TIES program, a program comprising different trials investigating the efficacy of sorafenib worldwide. In this particular study, eligible patients need to have locally recurrent or metastatic breast cancer that must be HER2/neu-negative. The study design is straightforward, with 220 patients randomly assigned to first-line therapy with weekly paclitaxel at the ECOG-E2100 dose of 90 mg/m² with or without sorafenib.

Interestingly, the difference in progression-free survival (PFS) between the two arms was not statistically significant. As a result, a subgroup analysis was performed to see if one group deviated wildly from the others, but none were identified. The secondary endpoint of time to disease progression seemed to illustrate more of a benefit with the combination arm: 8.1 months compared to 5.6 months. But one must be cautious when evaluating these trials in which the endpoint chosen to depict the data is a little outside of the primary endpoint. The response rate also seemed to be higher with
the sorafenib arm: 67 versus 54 percent. Regarding adverse events, the major issue observed was hand-foot syndrome, which is often seen in sorafenib trials.

Overall, this study indicates potential trends toward improvement in efficacy with the addition of sorafenib to paclitaxel. The only difference between this study and previous trials is that this is a large, randomized, Phase II experience. Appropriately, the investigators suggest that this could lead to a large Phase III study. But I don’t believe there is a take-home message for the practicing oncologist quite yet. Personally, I would not use sorafenib with paclitaxel as first-line therapy just yet.

Dr Brufsky is Associate Professor of Medicine and Associate Division Chief of Hematology/Oncology at the University of Pittsburgh, Co-Director of the Comprehensive Breast Cancer Center and Associate Director for Clinical Investigation at the University of Pittsburgh Cancer Institute in Pittsburgh, Pennsylvania.